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Critical Phenomena

Critical point: 

It is the end point of the phase equilibrium curve. In the vicinity of the critical point, the 
physical properties of the liquid and vapour change dramatically and both phases become 

even more similar. 
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Critical Phenomena
Why is it important?

There are fluctuations of the fluid density  that occur over 
longer and longer distances measured by the correlation 

length .

δρ

ξ

⟨δρ(x1)δρ(x2)⟩ ∼
e−|x1−x2|/ξ |x1 − x2 | ≫ ξ

1
|x1 − x2 |1+η |x1 − x2 | ≪ ξ
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There are fluctuations of the fluid density  that occur over 
longer and longer distances measured by the correlation 

length .

δρ

ξ

⟨δρ(x1)δρ(x2)⟩ ∼
e−|x1−x2|/ξ |x1 − x2 | ≫ ξ

1
|x1 − x2 |1+η |x1 − x2 | ≪ ξ

, for 


Near the critical point and at fixed pressure, the correlation length diverges.

ξ ∼ (T − Tc)−ν T → Tc ξ → ∞

All scales drop out
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More generally, critical exponents which describe the behaviour of physical quantities near 
continuous phase transitions, are divergent as T → Tc

In a wide variety of fluids the critical values  and  are different but the critical exponents 
are the same. 

Pc Tc

Why is it the case?

For instance, if we consider water  it has been measured that  δρ(T ) ∼ (T − Tc)β β ∼ 0.325

Spontaneous magnetization of 
uniaxial magnetsM(T ) ∼ (T − Tc)β

Universality 
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Scale invariance

5

They belong to the same universality class!  
This means that while the models at finite scales are very different, in the vicinity of the critical 
point asymptotic phenomena (e.g. critical exponents) are the same in all models falling in the 

same universality class.  

This is associated with the emergence of a symmetry Scale invariance

invariance under rescaling 
(dilatation) of all coordinates by a 

uniform factor  x → λx
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Conformal invariance
An interesting class of transformations are conformal transformations, which preserve angles.

locally at each point it is a rotation + a dilatation (with rescaling 
factor x-dependent)

Polyakov in 1970 conjectured that scale invariant theories describing critical points are actually 
conformal invariant. 

The description of fixed points boils down to classifying conformal field theories.



Centrality of CFTs

7

Conformal Field Theories (CFTs) are central also in the characterisation of QFTs. 

Large classes of QFTs can be seen as RG flows which emerge from a CFT (UV fixed point) and 
another non trivial CFT (IR fixed point)

CFT CFT

CFT
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They are related to theories of quantum gravity via the AdS/CFT correspondence 

Operative mapping: observables (correlation functions and scattering amplitudes) in both 
theories are related in a very specific way. 

Maldacena 1998
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Main aim 

9

Study conformal field theories using an approach which is based on symmetries and with very 
little/no input from the microscopical description of the theory

find the critical exponents


classify the possible CFTs
 conformal invariance 


existence of the operator product 
expansion (OPE)


Polyakov 1974, Ferrara Grillo Gatto 1973
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We are interested in finding the critical exponents: how are they related to the CFT 
description? 

Let’s start with introducing equal-time correlation functions of local quantities 𝒪i(x)

⟨𝒪1(x1)𝒪2(x2)…𝒪k(xk)⟩

We are interested in the behaviour of the correlator at large distances |xi − xj | ≫ a

any microscopic 
scale 


Scale invariance 

Extend the long distance behaviour to any distance: continuous limit
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Here it is shown for scalars, but it is similar for spinning operators.
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Correlators
The conformal dimension is related to the critical exponent, for instance in the case of the Ising 

model Δσ = 1/2 + η/2

conformal 
dimension 

three point function 
coefficient OPE data  + = 

What about four point correlators?

⟨𝒪(x1)𝒪(x2)𝒪(x3)𝒪(x4)⟩ =
𝒢(u, v)

x2ΔO
12 x2ΔO

34

u =
x2

12x2
34

x2
13x2

24
v =

x2
14x2

23

x2
13x2

24
cross ratios 
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OPE
Conformal field theories are equipped with the Operator Product Expansion allowing us to 

replace the product of two nearby local operators by a series of single local operators inside a 
correlation function:

𝒪i(x1)𝒪j(x2) = ∑
k

cijk fijk(x1, x2, y)𝒪k(y)

1) conformal symmetry fixes the structure of the function  and the coefficient is 
exactly the three point function coefficient

fijk(x1, x2, y)

2) the radius of convergence of this expansion is finite 

Using the OPE inside correlators of n-points, with , it is possible to reduce them to 
two point functions. 

n ≥ 4
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= ∑
m

c2
m

fm(x1, x2, y1)fm(x3, x4, y2)
y2Δm

12
= ∑

m

c2
m

gm(u, v)
x2ΔO

12 x2ΔO
34

conformal blocks 

What is m? It denotes the quantum numbers of the exchanged operators, which in this 
particular case are the conformal dimension and the Lorenz spin . (Δ, ℓ)

Dolan Osborn 2002
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𝒪m ∑
m′ 

𝒪m′ =

Identity Operator Large spin sector 

We need to have infinitely many operators whose conformal dimension approaches 
 (double traces) and with very large spin. Δ = 2ΔO + 2n

In order to probe this limit we need to study the divergences as .v → 0

It is possible to use the Casimir equation to iteratively find all the  corrections and resum 
them to extrapolate for finite values of the spin. 

1/ℓ
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It has poles at the dimensions of the exchange operators with residues the square of the three 
point functions. The function is analytic in the spin for .ℓ ≥ 2

Caron Huot 2017



Applicability 
The applicability of these methods is pretty vast, and it mostly efficiently used when the theory 

has a small parameter (perturbation theory)

number of dimensions 

rank of the gauge group 

coupling constant 

…

d = 4 − ϵ

N

g or λ

28
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We can choose a simplified setup:

 symmetryℤ2

ignore the stress tensor 
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We expand all the quantities up to order :N−4

𝒢(u, v) = 𝒢(0)(u, v) +
1

N2
𝒢(1)(u, v) +

1
N4

𝒢(2)(u, v) + …

c2
Δ,ℓ = k(0)

Δ,ℓ +
1

N2
k(1)

Δ,ℓ +
1

N4
k(2)

Δ,ℓ + …

Δ = Δ(0) +
1

N2
γ(1) +

1
N4

γ(2) + …

The idea is to compute order by order in , they CFT data. The main aim is to understand if we 
can predict the order  using the  one.

N
N2k N2(k−1)
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However, it is clear that at leading order we are in the same setup that we already discussed! 

𝒪 × 𝒪 = 1 + [𝒪𝒪]n,ℓ

Use crossing symmetry + OPE to determine  and .Δ(0) k(0)
Δ,ℓ

2ΔO + 2n + ℓ
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Other applications

35

This program has been carried over in several situations.

Using the AdS/CFT correspondence, it is possible to find 
amplitudes of supergravitons and supergluons on AdS 

spaces. 

Provides a unique framework to access scattering 
amplitudes in curved space-times, which are generically 
very hard/impossible to compute with other methods.

Also for amplitudes in M-theory, where there is no 
Lagrangian description. 

It can be complemented with other techniques (for instance 
integrability and localization)
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I presented a framework to analytically study CFT, using only the symmetries and the 
presence of an OPE expansion.  

Mapping between singularities and OPE data. 


