

A guided tour of machine learning (theory)

Lorenzo Rosasco MaLGa, Università degli Studi di Genova, MIT, IIT

AI everywhere (literally...)

The state of affairs

Rethinking machine learning:

- with statistical mechanics
- with information theory
- with tropical geometry

▶ ...

Outline

The paradigm of learning from examples

Statistical learning theory (and optimization)

A theory crisis?

The basic picture

$(x_i,y_i)_{i=1}^n \quad \mapsto \quad f:X \to Y$

Fixing a model

$$w \in \mathbb{R}^p \mapsto f_w$$

Fixing a model

$$w \in \mathbb{R}^p \mapsto f_w$$

$$f_w(x) = \sum_{j=1}^p w^j \varphi_j(x)$$

Fixing a model

$$w \in \mathbb{R}^p \mapsto f_w$$

$$f_{w}(x) = \sum_{j=1}^{p} w^{j} \varphi_{j}(x)$$

$$f_w(x) = \sum_{j=1}^p \beta^j \sigma(\alpha_j^\top x + \alpha_j),$$

Model fitting

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} (f_w(x_i) - y_i)^2$$

w has often millions of parameters...data are often (much) less!

Model fitting

$$\min_w \frac{1}{n} \sum_{i=1}^n (f_w(x_i) - y_i)^2$$

w has often millions of parameters...data are often (much) less!

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk"

von Neumann:

Learning is not (just) fitting, but prediction

Learning is not (just) fitting, but prediction

Learning is not (just) fitting, but prediction

Predictions from random and noisy samples

Learning pipeline

Model fitting (regularized)

$$\widehat{w}_{\theta} = \underset{\|w\| \leqslant \theta}{\operatorname{argmin}} \frac{3}{n} \sum_{i=1}^{n/3} (f_w(x_i) - y_i)^2$$

Learning pipeline

Model fitting (regularized)

$$\widehat{w}_{\theta} = \underset{\|w\| \leqslant \theta}{\operatorname{argmin}} \frac{3}{n} \sum_{i=1}^{n/3} (f_w(x_i) - y_i)^2$$

Model tuning

$$\widehat{\theta} = \underset{\theta}{\text{argmin}} \frac{3}{n} \sum_{i=n/3+1}^{2n/3} (f_{\widehat{w}_{\theta}}(x_i) - y_i)^2$$

Learning pipeline

Model fitting (regularized)

$$\widehat{w}_{\theta} = \underset{\|w\| \leqslant \theta}{\operatorname{argmin}} \frac{3}{n} \sum_{i=1}^{n/3} (f_w(x_i) - y_i)^2$$

$$\widehat{\theta} = \underset{\theta}{\text{argmin}} \frac{3}{n} \sum_{i=n/3+1}^{2n/3} (f_{\widehat{w}_{\theta}}(x_i) - y_i)^2$$

Model assessment

$$\frac{3}{n}\sum_{i=2n/3+1}^n(f_{\widehat{w}_{\widehat{\theta}\,\theta}}(x_i)-y_i)^2$$

Classic vs data driven modeling

Paradigm shift in modeling, driven by data availability.

► Careful pipeline needed.

► Theoretical guidance needed.

ML theory

Representation: "Which model?"

Generalization: "How accurate is my model?"

Optimization: "How can I compute my model?"

Outline

The paradigm of learning from examples

Statistical learning theory (and optimization)

A theory crisis?

Statistical machine learning

• $(X, Y) \sim P$ random variables in $\mathbb{R}^d \times \mathbb{R}$, and $(x_1, y_1), \ldots, (x_n, y_n) \sim P^n$.

Statistical machine learning

- $(X, Y) \sim P$ random variables in $\mathbb{R}^d \times \mathbb{R}$, and $(x_1, y_1), \ldots, (x_n, y_n) \sim P^n$.
- ▶ $l : \mathbb{R} \times \mathbb{R} \to [0, \infty)$ loss function, e.g. $l(f(x), y) = (y f(x))^2$.

Statistical machine learning

- $(X, Y) \sim P$ random variables in $\mathbb{R}^d \times \mathbb{R}$, and $(x_1, y_1), \ldots, (x_n, y_n) \sim P^n$.
- ▶ $l : \mathbb{R} \times \mathbb{R} \to [0, \infty)$ loss function, e.g. $l(f(x), y) = (y f(x))^2$.

```
Problem: minimize L(f) = \mathbb{E}[\ell(f(X), Y)], given only (x_1, y_1), \ldots, (x_n, y_n) \sim P^n.
```


ERM and its excess risk

$$\begin{split} \widehat{w}_{\theta} = \underset{\|w\| \leqslant \theta}{\text{argmin}} \widehat{L}(f_{w}), \qquad \widehat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_{i}), y_{i}) \\ \widehat{f}_{\theta} = f_{\widehat{w}_{\theta}} \end{split}$$

ERM and its excess risk

$$\begin{split} \widehat{w}_{\theta} = \underset{\|w\| \leqslant \theta}{\operatorname{argmin}} \widehat{L}(f_{w}), \qquad \widehat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_{i}), y_{i}) \\ \widehat{f}_{\theta} = f_{\widehat{w}_{\theta}} \end{split}$$

Error decomposition

Population algorithm

$$\begin{split} f_\theta &= f_{w_\theta}, \qquad w_\theta = \mathop{\text{argmin}}_{\|w\| \leqslant \theta} L(f_w) \\ \end{split}$$

Error decomposition

Population algorithm

$$f_{\theta} = f_{w_{\theta}}, \qquad w_{\theta} = \operatorname*{argmin}_{\|w\| \leqslant \theta} L(f_{w})$$

$$L(\widehat{f}_{\theta}) - \min L(f) = \underbrace{L(\widehat{f}_{\theta}) - L(f_{\theta})}_{\text{Estimation error}} + \underbrace{L(f_{\theta}) - \min L(f)}_{\text{Approximation error}}$$

Approximation error

Assume

$$|\ell(y,f(x))-\ell(y,f(x))|\leqslant C_\ell|f(x)-f'(x)|$$

Lemma Let $L(f_*) = \min L(f)$, then $L(f_{\theta}) - \min L(f) \leqslant C_{\ell} \min_{\|w\| \leqslant \theta} \|f_{\theta} - f_*\|_{L^1(P)}$

Approximation error

Assume

$$|\ell(y,f(x))-\ell(y,f(x))|\leqslant C_\ell|f(x)-f'(x)|$$

Lemma Let $L(f_*) = \min L(f)$, then $L(f_{\theta}) - \min L(f) \leqslant C_{\ell} \min_{\|w\| \leqslant \theta} \|f_{\theta} - f_*\|_{L^1(P)}$

Proof.

$$L(f_{\theta}) - L(f_*) = \min_{\|w\| \leqslant \theta} \int (\ell(f(x), y) - \ell(f_*(x), y)) dP(x, y) \leqslant C_{\ell} \min_{\|w\| \leqslant \theta} \int |f(x) - f_*(x)| dP(x, y) dP(x, y) dP(x, y) \leq C_{\ell} \min_{\|w\| \leqslant \theta} \int |f(x) - f_*(x)| dP(x, y) dP(x, y) dP(x, y) \leq C_{\ell} \min_{\|w\| \leqslant \theta} \int |f(x) - f_*(x)| dP(x, y) dP(x, y) dP(x, y) \leq C_{\ell} \min_{\|w\| \leqslant \theta} \int |f(x) - f_*(x)| dP(x, y) dP(x, y) dP(x, y) \leq C_{\ell} \min_{\|w\| \leqslant \theta} \int |f(x) - f_*(x)| dP(x, y) dP(x, y) dP(x, y) dP(x, y) \leq C_{\ell} \min_{\|w\| \leqslant \theta} \int |f(x) - f_*(x)| dP(x, y) dP(x, y)$$

Universality

A model is universal if for all f_*

$$\underset{\theta \rightarrow \infty}{\text{lim}} \| f_\theta - f_* \|_{L^1(P)} = 0.$$

e.g. Kernel methods and neural nets.

[DeVore, Lorentz '93, Pinkus '99]

Smoohtness conditions

Assume

 $f_{*}\in \mathfrak{H}_{s}$,

for some smoothness class \mathcal{H}_s . e.g. the Sobolev space $W^{s,2}$.

Smoohtness conditions

Assume

 $f_*\in \mathfrak{H}_s$,

for some smoothness class \mathcal{H}_s . e.g. the Sobolev space $W^{s,2}$.

Approximation results ensure that

$$\min_{\|w\| \leqslant \theta} \|f_{\theta} - f_*\|_{L^1(P)} \lesssim a(\theta, s)$$

where $a(\theta, a)$ decays with θ increasing and rate depending on s, e.g. $\theta^{-s/d}$

[DeVore, Lorentz, '93]

Estimation error

Lemma By definition of ERM, it holds $L(\widehat{f}_{\theta}) - L(f_{\theta}) \leqslant C_{\ell} \sup_{\|w\| \leqslant \theta} |\widehat{L}(f_{w}) - L(f_{w})|$

Estimation error

Lemma By definition of ERM, it holds

$$L(\widehat{f}_{\theta}) - L(f_{\theta}) \leqslant C_{\ell} \sup_{\|w\| \leqslant \theta} |\widehat{L}(f_{w}) - L(f_{w})|$$

Proof.

$$L(\widehat{f}_{\theta}) - L(f_{\theta}) = L(\widehat{f}_{\theta}) - \widehat{L}(\widehat{f}_{\theta}) + \underbrace{\widehat{L}(\widehat{f}_{\theta}) - \widehat{L}(f_{\theta})}_{\leqslant 0} + \widehat{L}(f_{\theta}) - L(f_{\theta})$$

[Vapnilk, Chervonenkis, '77, Gyorfi, Devroye, Lugosi, '96]

Capacity measures

Empirical process

$$\sup_{\|w\| \leqslant \theta} |\widehat{L}(f_w) - L(f_w)|$$

Capacity measures

Empirical process

$$\sup_{\|w\| \leqslant \theta} |\widehat{L}(f_w) - L(f_w)|$$

$$\begin{split} & \textbf{Lemma (Rademacher complexities)} \\ & \textit{If } \sigma_i \in \{\pm 1\}, P(1) = P(-1) = 1/2, i = 1, \dots, n \ (\textit{Rademacher random variables}), \textit{then} \\ & \mathbb{E} \left[\sup_{\|w\| \leqslant \theta} |\widehat{L}(f_w) - L(f_w)| \right] \leqslant 2C_\ell \underbrace{\mathbb{E} \left[\frac{1}{n} \sup_{\|w\| \leqslant \theta} \sum_{i=1}^n \sigma_i f_w(x_i) \right]}_{\textit{Rademacher complexity}}, \end{split}$$

Capacity measures for linear models

$$f_w = \sum_{j=1}^\infty w^j \varphi_j$$

Capacity measures for linear models

$$f_w = \sum_{j=1}^\infty w^j \varphi_j$$

Results for nonlinear models can be similarly derived.

The bias-variance trade-off

$$L(\widehat{f}_{\theta}) - \min L(f) \lesssim \frac{\theta}{\sqrt{n}} + a(\theta, s)$$

The bias-variance trade-off

$$L(\widehat{f}_{\theta}) - \min L(f) \lesssim \frac{\theta}{\sqrt{n}} + a(\theta, s)$$

The bias-variance trade-off

$$\theta_* = \theta(s, n) \quad \Longrightarrow \quad L(\widehat{f}_{\theta_*}) - \min L(f) \lesssim \varepsilon(n, s)$$

where $\varepsilon(\theta,a)$ decays with n increasing and rate depending on s, e.g. $n^{-\frac{2s}{2s+d}}$ UniGe | MatGa

Outline

The paradigm of learning from examples

Statistical learning theory (and optimization)

A theory crisis?

Explicit regularization

$$\min_{\|\boldsymbol{w}\| \leqslant \boldsymbol{\theta}} \widehat{L}(f_{\boldsymbol{w}}) \qquad \quad \widehat{\boldsymbol{w}}_{\boldsymbol{\theta},t+1} = \mathsf{P}_{\boldsymbol{\theta}} \left(\widehat{\boldsymbol{w}}_{\boldsymbol{\theta},t} - \gamma_t \nabla \widehat{L}(f_{\widehat{\boldsymbol{w}}_{\boldsymbol{\theta},t}}) \right)$$

Explicit regularization

$$\min_{\|\boldsymbol{w}\| \leqslant \boldsymbol{\theta}} \widehat{L}(f_{\boldsymbol{w}}) \qquad \quad \widehat{\boldsymbol{w}}_{\boldsymbol{\theta},t+1} = \mathsf{P}_{\boldsymbol{\theta}} \left(\widehat{\boldsymbol{w}}_{\boldsymbol{\theta},t} - \gamma_t \nabla \widehat{L}(f_{\widehat{\boldsymbol{w}}_{\boldsymbol{\theta},t}}) \right)$$

Implicit regularization

$$\widehat{w}_{t+1} = \widehat{w}_t - \gamma_t \nabla \widehat{\mathsf{L}}(\mathsf{f}_{\widehat{w}_t})$$

Explicit regularization

$$\min_{\|\boldsymbol{w}\| \leqslant \boldsymbol{\theta}} \widehat{L}(f_{\boldsymbol{w}}) \qquad \quad \widehat{\boldsymbol{w}}_{\boldsymbol{\theta},t+1} = \mathsf{P}_{\boldsymbol{\theta}} \left(\widehat{\boldsymbol{w}}_{\boldsymbol{\theta},t} - \gamma_t \nabla \widehat{L}(f_{\widehat{\boldsymbol{w}}_{\boldsymbol{\theta},t}}) \right)$$

Implicit regularization

$$\widehat{w}_{t+1} = \widehat{w}_t - \gamma_t \nabla \widehat{\mathsf{L}}(\mathsf{f}_{\widehat{w}_t})$$

Can we characterize $\widehat{f}_t = f_{\widehat{w}_t}$ $L(\widehat{f}_t) - L(f_*)$

Inexact optimization with linear models

If
$$f_w = \sum_{j=1}^\infty w^j \varphi_j$$
, ℓ convex and
$$w_{t+1} = w_t - \gamma_t \nabla L(f_{w_t}),$$
 then for $f_t = f_{w_t}$
$$L(f_t) - L(f_*) \leqslant \delta_t.$$

Inexact optimization with linear models

If
$$f_w = \sum_{j=1}^{\infty} w^j \phi_j$$
, ℓ convex and
 $w_{t+1} = w_t - \gamma_t \nabla L(f_{w_t})$,
then for $f_t = f_{w_t}$
 $L(f_t) - L(f_*) \leq \delta_t$.
Idea: consider
 $\widehat{w}_{t+1} = \widehat{w}_t - \gamma_t (\nabla L(f_{\widehat{w}_t}) + e_t))$
with
 $e_t = \nabla \widehat{L}(f_{\widehat{w}_{\theta,t}}) - \nabla L(f_{\widehat{w}_{\theta,t}})$.

[Rockafellar, '76, Salzo, Villa '11, Schmidt, Le Roux, Bach '11]

Excess risk control with inexact gradient

Excess risk control with inexact gradient

Need to control:

- gradient error e_t ,
- ▶ path $(\hat{f}_j)_j$ around f_* .

Gradient concentration

$$\mathbb{E}\left[\sup_{\|w\| \leqslant \theta} \|\nabla \widehat{L}(f_w) - \nabla L(f_w)\|\right] \lesssim \frac{\theta}{\sqrt{n}}$$

Gradient concentration

$$\mathbb{E}\left[\sup_{\|w\| \leq \theta} \|\nabla \widehat{L}(f_w) - \nabla L(f_w)\|\right] \lesssim \frac{\theta}{\sqrt{n}}$$

 $\label{eq:formula} \begin{array}{l} \mbox{Path control} \\ \mbox{For } j \lesssim \sqrt{n} \\ \| \widehat{f}_t - f_* \| \lesssim \| f_* \|. \end{array}$

[Stankewitz, Mücke, R. '21, see also Lin R. '17]

Excess risk control with inexact gradient

$$\label{eq:linear_time_state} \begin{split} & \mbox{Theorem (Stankewitz, Mücke, R. '21)} \\ & \mbox{] For } t \lesssim \sqrt{n}, \\ & \mathbb{E}\left[L(\widehat{f}_t) - L(f_*)\right] \lesssim \frac{1}{\sqrt{n}} \end{split}$$

Same as explicit regularization: implicit regularization a *new* algorithmic idea¹.

¹In inverse problem the idea is known since the '50s as iterative regularization

"Looking for the lost keys under the lamp, because that's where the light is.", Yann Lecun

► Can we explain the lack of variance? Learning & interpolation?

Are linear model of any practical use?

Can linear model explain deep learning?

ML meets large scale computing

Scalable implementations needed $\mapsto \mathsf{FALKON}$

$$\begin{split} & \textbf{Function Falkon}(X \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^{n}, \lambda, m, t) \texttt{:} \\ & X_m \leftarrow \texttt{RamdomSubsample}(X, m) \texttt{;} \\ & \mathsf{T}, A \leftarrow \texttt{Preconditioner}(X_m, \lambda) \texttt{;} \\ & \textbf{Function Lin0p}(\beta)\texttt{:} \\ & | \nu \leftarrow A^{-1}\beta\texttt{;} \\ & c \leftarrow k(X_m, X)k(X, X_m)T^{-1}\nu\texttt{;} \\ & \textbf{return } A^{-\top}T^{-\top}c + \lambda n\nu\texttt{;} \\ & \textbf{rhs} \leftarrow A^{-\top}T^{-\top}k(X, X_m)y\texttt{;} \\ & \beta \leftarrow \texttt{ConjugateGradient}(\texttt{Lin0p, rhs, t})\texttt{;} \\ & \textbf{return } T^{-1}A^{-1}\beta\texttt{;} \end{split}$$

[Meanti, Carratino, R., Rudi '20, Meanti, Carratino, De Vito, R. '21]

Efficient linear models in practice: HEP

UniGe

Table 4: Average training times per single run with standard deviations.

```
[Letizia et al. '21]
```

Efficient linear models in practice: vision

Wrapping up

- A guided tour of statistical learning theory
- Statistics and optimization under the lens of linear models
- Modern gist to classic ideas (hopefyully!)

What's next?

- Data driven + mechanistic modeling
- Efficient implementation for other loss functions.
- Random projections+ multiscale approaches [Chen, Avron, Sindawhani '16].

PhD/Postdoc positions available!

