Dark matter and line-intensity mapping

Marc Kamionkowski Johns Hopkins University

with José Luis Bernal, Andrea Caputo, Cyril Creque-Sarbinowski, and Francisco Villaescusa-Navarro

Who did the work

- Dark matter:
 - Creque-Sarbinowski & MK, 1806.11119
 - Bernal, Caputo, & MK, 2012.00771
- Neutrinos:
 - Bernal, Caputo, Villaescusa-Navarro, & MK, 2103.12099
- Other LIM collaborators:
 - E. Kovetz, P. Breysse, G. Sato-Polito, K. Boddy
- General background:
 - "Line-Intensity Mapping: 2017 Status Report," Kovetz et al., 1709.09066 [astro-ph.CO]
 - "User's guide to extracting cosmological information from line-intensity maps," Bernal, Breysse, Gil-Marín, & Kovetz, 1907.10067.

Line-Intensity Mapping

- LIM: use integrated light in given pixel on sky
- Information from all galaxies and IGM along LoS
- Use redshift of identifiable spectral line \rightarrow 3D maps

Galaxy surveys: detailed distribution of brightest galaxies

Intensity maps: noisy distribution of all galaxies and IGM

 ~ 1.5 k hours of COMAP mapping CO intensity fluctuations

P. Breysse

Targeted lines

•
$$v_{obs} = v_0 / (1 + z)$$

Signal strongly depends on astrophysical processes

21 cm (pre-reio)

CO, CII, OIII, H α , H β ,... 21cm (post-reio)

Continuum

Lyα

Adapted from P. Breysse, Background: Sci. Am.

Probing the Universe

Growth of Structure

E. D. Kovetz

Probing the Universe

Probed Universe

Probing the Universe

- Different stages of evolution across time
- But we have only exploited a small part
- LIM: fills the gap!

Probing the Universe with LIM

• Exciting experimental landscape!

Context: Spectacular Progress

First LIM community meeting, KIPAC, Stanford 2016

Second LIM community meeting, Johns Hopkins 2017

Third: Aspen Winter Conference, February 2018

2018 WINTER CONFERENCE COSMOLOGICAL SIGNALS FROM COSMIC DAWN TO THE PRESENT

Fourth: CCA Flatiron Workshop, February 2019

Fifth: Marseille L2S2 Conference, July 2019

Sixth: UChicago Workshop, July 2021

- Our field is maturing.

SPHEREX: An All-Sky Spectral Survey

SPHEREX SELECTEDU

Designed to Explore

<u>The Origin of the Universe</u> <u>The Origin and History of Galaxies</u> <u>The Origin of Water in Planetary Systems</u>

> The First All-Sky Spectral Survey A Rich Legacy Archive for the Astronomy Community with 100's of Millions of Stars and Galaxies

Low-Risk Implementation

No Moving Parts Single Observing Mode Large Technical & Scientific Margins Follows successful CIT/JPL mgt. model of NuSTAR

3.1.12 Mapping the Cosmic Structure in Dark Matter, Missing Baryons, and Atomic and Molecular Lines

Some Science Goals

Cosmology:

- Expansion rate history: BAO
- Neutrinos: sum of masses, decay
- Inflation (running, non-gaussianity, oscillations, CIP, etc.)
- Dark energy (wa/w0, etc.)
- Dark matter (decaying, annihilating, interacting)
- Modified gravity

• ...

- Optical depth to Reionization
-
- ...

- **Astrophysics**
- Reionization: bubble sizes, ionized fraction, duration
- Star formation rate (history, peak rise/fall, Pop III stars)
- Metallicity history
- AGN feedback
- Molecular gas density
- IGM density, evolution, clustering
- Faint end of luminosity function
- ...
- ...
- ...

Unique Advantages of LIM: Overlap

Observables

- Clustering anisotropy parametrized by monopole, dipole, quadrupole, hexadecapole in angle wrt LOS
 - Clustering along line of sight
 - Angular clustering

Voxel-intensity distribution (VID) (one-point PDF)

Contamination of intensity maps

- Continuous foregrounds: problem for HI surveys, less severe at higher frequencies
- Line interlopers: Main problem for higher freq. LIM surveys
 - $v_{obs} = v/(1 + z) = v'/(1 + z') \rightarrow$ other lines redshifted to same v_{obs}

Contamination of intensity maps

- Continuous foregrounds: problem for HI surveys, less severe at higher frequencies
- Line interlopers: Main problem for higher freq. LIM surveys
 - $v_{obs} = v/(1 + z) = v'/(1 + z') \rightarrow$ other lines redshifted to same v_{obs}
 - Two approaches:
 - Masking: targeted (external data) and blind (contaminated voxels are expected to be brighter)
 - Model the effect of known interlopers in the likelihood and analyses

Contamination of intensity maps

- Continuous foregrounds: problem for HI surveys, less severe at higher frequencies
- Line interlopers: Main problem for higher freq. LIM surveys
 - $v_{obs} = v/(1 + z) = v'/(1 + z') \rightarrow$ other lines redshifted to same v_{obs}
 - Two approaches:
 - Masking: targeted (external data) and blind (contaminated voxels are expected to be brighter)
 - Model the effect of known interlopers in the likelihood and analyses

Exotic radiative decays would be inadvertently detected as a line interloper!!

Exotic radiative decays

• Decaying dark matter: $\chi \rightarrow \gamma + \gamma$

$$v_{\gamma} = m_{\chi}c^2/2h_P \qquad \qquad \rho_{L}^{\chi}(\mathbf{x}, z) = \rho_{\chi}(\mathbf{x}, z)c^2 \Gamma_{\chi}f_{\chi}f_{\gamma\gamma}f_{esc} \left(1 + 2\mathcal{F}_{\gamma}\right)$$

 Θ_{γ}

• Traces directly the DM density field

Exotic radiative decays

Exotic radiative decays

• Traces directly the cosmic neutrino density field

Effect in power spectrum

• Confusion in redshift

Effect in power spectrum

• Confusion in redshift \rightarrow projection effects \rightarrow **extra anisotropy**

• Model it similar to Alcock-Paczynski effect: $k_i^{true} \equiv k_i^{infer}/q_i$

$$q_{\parallel} = \frac{(1+z_X)/H(z_X)}{(1+z_l)/H(z_l)} \qquad \qquad q_{\perp} = \frac{D_M(z_X)}{D_M(z_l)}$$

Effect in power spectrum

• $P_{tot} = P_l + P_X;$

$$k_i^{true} \equiv k_i^{infer}/q_i$$

Effect in VID

• Each voxel receives contributions from both emissions:

$$T_{tot} = T_l + T_{noise}$$

$$\mathscr{P}_{tot+X}(T) = \left(\left(\mathscr{P}_l * \mathscr{P}_X \right) * \mathscr{P}_{noise} \right)(T); \qquad \mathscr{P}_X = \mathscr{P}_{\widetilde{\rho}} / \left\langle T_X \right\rangle$$

- $\mathscr{P}_{\tilde{\rho}}$: PDF of normalized densities. Obtained from simulations
- . We provide the first analytic fit to $\mathscr{P}_{\widetilde{\rho}_v}$, using Quijote simulations and symbolic regression

Effect in VID

• Each voxel receives contributions from both emissions:

No noise contribution included here!

Sensitivity to DM decays

• After marginalizing over astrophysical uncertainties of the target emission line

95%CL

Sensitivity to axions

95%CL

Sensitivities to neutrino decay

Challenges & improvements

- Challenges:
 - Astrophysical uncertainties: marginalized over them
 - Other contaminants: modeled loss information
 - Line broadening
- Reasons to be optimistic:
 - Extendable to other statistics
 - Combination with cross-correlations with galaxy clustering and weak lensing
 - Confusion between DM and neutrino decays: characteristic differences when combining summary statistics and probes
 - Targeted masking to increase relative exotic contributions

The Cosmic Expansion History from Line-Intensity Mapping

José Luis Bernal,^{1, 2, 3} Patrick C. Breysse,⁴ and Ely D. Kovetz⁵

As an aside:

Cosmological perturbations without the Boltzmann hierarchy

Marc Kamionkowski

Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (Dated: May 10, 2021)

arXiv:2105.02887

Conclusions

- LIM holds a great protential to probe exotic radiative decays
- Adapting techniques to identify and model interlopers is cheap and powerful
- General treatment, for phenomenological DM and neutrino decays that can be translated later to specific models
- Sensitivity extremely competitive:
 - DM: HETDEX & SPHEREx will improve current constraints (1-10 eV) and AtLAST will be similar to IAXO (0.01-0.1 eV)
 - Neutrinos: Improve CMB forecasts and competitive with best constraints