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Tunder and lightning Until a few years ago we have only seen the Universe
(and ~ 95% of it is Dark: i.e. Dark Matter and Dark 
Energy)

Now we finally are able to listen to the Universe 

This is revolutionary!

A revolutionary new and completely different way 
to study the Universe 

Figure credit: LISA  



Through the detection and observation of 
gravitational waves (GWs):

Trace
• Trace the 

formation, 
growth, and 
merger history 
of (massive) 
black holes 
(BHs), etc. 

Explore
• Explore stellar 

populations 
and dynamics 
in galactic 
nuclei 

Test
• Test General 

Relativity with 
observations 

Probe
• Probe new 

physics and 
cosmology 

Survey
• Survey 

compact 
stellar-mass 
binaries and 
study the 
structure of 
the Galaxy 



What is a Gravitational 
Wave (GW)?

• In general one gives the name GW to a small 
ripples rolling across space-time.

• However it is not just a solution of Einstein's 
differential equations which contains “a lot of” 
wiggles  for ripples in coordinates.

• It is important to distinguish the difference 
between the physical coordinate independent 
modes and modes that are purely coordinate 
artefacts.



Properties of GWs 

• Propagate at the speed of light (in “standard” GR)
• Transverse to the direction of propagation 
• Two polarizations (+ and x) 

- Here we are assuming a weak gravitational field in GR where
- GWs are propagating in the z-direction;
- GWs are propagating waves of spacetime curvature, tidally stretching and squeezing as 
they radiate from their source into the Universe.
-The corresponding line element is 



Properties of GWs 

• Propagate at the speed of light (in “standard” GR)
• Transverse to the direction of propagation 
• Two polarizations (+ and x) 

GWs are deformations of space itself, stretching it first in one direction, then in the 
perpendicular direction.



Properties of GWs 

• Propagate at the speed of light (in “standard” GR)
• Transverse to the direction of propagation 
• Two polarizations (+ and x) 
• Carry energy 

The GWs a source emits backreact upon it, which appears as a loss of energy and 
angular momentum. 
The “quadrupole formula” predicts that a system with a time changing quadrupole 
moment will lose energy to GWs according to

where



Properties of GWs 

• Propagate at the speed of light (in “standard” GR)
• Transverse to the direction of propagation 
• Two polarizations (+ and x) 
• Carry energy 
• Affect the relative separation of test particles 

- Δ" is the change in the spacing between particles due to gravitational wave, 

- " is the initial distance between particles, and 

- ℎ is  the fractional change in distance (strain) and  given by

ℎ = ⁄Δ% %



Properties of GWs 

-

In general 
- ℎ = ⁄Δ% % is more complex and depends upon the geometry of the 
measurement device, &! the (spatial and unit) separation vector orthogonal 
to the arrival direction, and the frequency and polarization of the GW
- ℎ stretch and shrink the distance between two points

Δ"
" =

1
2ℎ%&'

%'&



Properties of GWs 
In general 
- ℎ = ⁄Δ% % is more complex and depends upon the geometry of the 
measurement device, &! the (spatial and unit) separation vector orthogonal 
to the arrival direction, and the frequency and polarization of the GW 
- ℎ stretch and shrink the distance between two points
- ℎ is the magnitude of a typical component 

ℎ = ⁄∆" " ≈ 10!""

To produce strong GWs need large masses (e.g., at least the mass of the Sun) 
moving very fast (e.g., near the speed of light) 

v is the typical speed associated with the source’s quadrupolar 
dynamics, and m is proportional to the mass that participates 
in those dynamics.

Gravitational waves are very very very weak!



Properties of GWs 
In general 
- ℎ = ⁄Δ% % is more complex and depends upon the geometry of the 
measurement device, &! the (spatial and unit) separation vector orthogonal 
to the arrival direction, and the frequency and polarization of the GW
- ℎ stretch and shrink the distance between two points
- ℎ is the magnitude of a typical component 
- ℎ depends on the kind of wave to be detected and this in turn depends on 
how the wave was produced and how far its source is from an observer!

Numbers characterizes stellar 
mass sources that are targets for 
ground-based high- frequency 
detectors

Numbers characterizes massive 
black holes that are targets of 
space-based low-frequency 
detectors



Gravitational waves are classified into three types: 
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! produced by a supernova explosion
! gamma ray bursters  
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Intense gravitational radiation
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! through the merging of two black holes.

• Periodic:
corresponds to those whose frequency is more or less constant for long periods of time
! GWs may have their origin in binary neutron stars (BNS) [or BBH} rotating around their 

center of mass,  
! From a NS that is close to absorb material from another star (accreting neutron star)
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• Impulsive (bursts):
Intense gravitational radiation
! produced by a supernova explosion
! gamma ray bursters  
! through the merging of two black holes.

• Periodic:
corresponds to those whose frequency is more or less constant for long periods of time
! GWs may have their origin in binary neutron stars (BNS) [or BBH} rotating around their 

center of mass,  
! From a NS that is close to absorb material from another star (accreting neutron star)

• Stochastic:
Stochastic waves contribute to the gravitational background noise 
! possibly have their origin in the Big Bang. 
! stochastic backgrounds due to BBHs or BNS coalescences. 

Three different wave types appear in different parts of the spectrum

Gravitational waves are classified into three types: 



Gravitational 
wave spectrum 

• GWs radiate at a 
frequency inversely 
proportional to their 
mass. 
• Such sources are 
more intense  and are 
expected to have higher 
amplitudes. 



High frequency
- The high-frequency band of roughly 1-1000 Hz is targeted by ground-based laser 

interferometers.

If the distance between one of the mirrors to the light splitter varies by an amount Δ# with 
respect to distance to the same splitter of the second mirror, then the recombined beam will 
change its intensity. From measuring the intensity change of the recombined light beam, it is 
possible to obtain Δ#. 

Figure credit: Holz lectures



High frequency
- The high-frequency band of roughly 1-1000 Hz is targeted by ground-based laser 

interferometers.
- The expected sources need to be compact [e.g., neutron stars (NSs) or black holes

(BHs)] and the inspiral needs to be in its final stages (last few minutes) in order for 
the GWs to be detectable by Earth-based interferometers.

- For such sources, the natural GW frequency is in the high-frequency band if M ∼ 1 − 
100 M⊙

- The most prominent facilities are those of LIGO in the USA, VIRGO in Italy, GEO600 
in Germany, and KAGRA in Japan, which are all running.

- Finally with the third-generation ground-based interferometer Einstein Telescope
(ET) and Cosmic Explorer, (CE) it will be possible to reach frequencies of the order of 
1 Hz (since going underground helps to partially overcome the seismic noise). 



High frequency

Terrestrial interferometers 
Figure credit: Holz lectures



High frequency

• Terrestrial interferometers
• Sensitivity evolution of current 
and proposed GW 
interferometric detectors. 

Mitra et al. 2021 

Third generation ground–based 

interferometric detector expected to be 

fully operational in early 2030s. It will be 

observing GWs emanated from BH-BH 

mergers up to - ≈ 20, the coalescence of 

NS-NS systems up to - ∼ 2, as well as 

from neutron star–black hole (NS-BH) 

inspirals up to - ∼ 8. 



High frequency
An example of the extraordinary potential of 3G detectors

Astrophysical reach for equal-mass, non-spinning 
binaries for Advanced LIGO, ET and CE 

• We see that the coalescence of compact binaries 

with total mass (20 − 100) M⊙, as typical of BH-BH 

or BH-NS binaries, will be visible by ET up to 

redshift z ∼ 20 and higher, probing the dark era of 

the Universe preceding the birth of the first stars. 

• By comparison, in the catalog of detections from 

the O1 and O2 Advanced LIGO/Virgo runs, the 

farthest BH-BH event is at z ≃ 0.5 and, at final 

target sensitivity, 2G detectors should reach z ≃ 1. 

• The range of BH masses accessible will also greatly 

increase; ET will be able to detect BHs with masses 

up to several times 103 M⊙, out to z∼1−5. 

ET will uncover the full population of 
coalescing stellar BBH since the end the 
cosmological dark ages!

ET and CE can contribute to uncover the star-formation history of the Universe! 

Maggiore et a. +DB 2020



Low frequency 
• The expected sources are merging of 

very massive Black Holes at high 
redshifts

• It should also detect waves from tens 
of stellar-mass compact objects 
spiraling into onto strong-field orbits 
of central massive

∼ 106 M⊙ Black Holes [i.e. EMRIs 
Extreme Mass Ratio Inspirals (EMRIs)]

• Binary stars and binary white-dwarf 
systems  formed in our Milky Way,

• It is targeted using laser 
interferometry between spacecraft.

10−5 Hz <f< 0.1 Hz 

EMRIs



Low frequency 
The advantage of a space-based GW interferometer resides in its capability to reach high 

sensitivity in the intermediate frequency band below 1 Hz. 

- In 2013, ESA has approved a GW observer in space as the L3 mission for launch in 2034, 

for which the LISA space-based interferometer is the main candidate.

- LISA plans to detect gravitational waves by measuring separation changes between 

fiducial masses in three spacecrafts that are supposed to be 5 million kilometers apart!

10−5 Hz <f< 0.1 Hz 

LISA Orbits



Low frequency 
The advantage of a space-based GW interferometer resides in its capability to reach 

high sensitivity in the intermediate frequency band below 1 Hz. 

- In 2013, ESA has approved a GW observer in space as the L3 mission for launch in 

2034, for which the “evolved LISA” (eLISA) space-based interferometer is the main 

candidate.

- eLISA plans to detect gravitational waves by measuring separation changes between 

ducial masses in three spacecrafts that are supposed to be 5 million kilometers apart!

- Future space-based gravitational-wave (GW) detectors such as DECI-hertz

Interferometer Gravitational-wave Observatory (DECIGO)  and Big-Bang Observer 

(BBO) are the most sensitive to GWs in 0.1 − 1 Hz band 

- DECIGO and BBO  will aim at detecting the primordial GW background, the mergers 

of intermediate-mass black holes (BH), and a large number (∼ 106) of neutron-star 

(NS) binaries in an inspiraling phase. 

DECIGO and BBO will provide a novel opportunity to measure the property of the 

Universe!

10−5 Hz <f< 0.1 Hz 

The configuration of DECIGO and 
BBO. There are 8 effective
interferometers in total.
BBO consists of four LISA-like 
triangular constellations orbiting 
the Sun at 1 AU
Decigo would be almost identical, 
except that the constellations are 
50 times smaller than BBO 



Very low frequency 
- In this frequency band, the two most plausible sources are

1) the coalescence of massive binary black holes

[Population synthesis estimates based on models of structure formation and 

galaxy growth suggest there should be a substantial population of such 

binaries whose members are black holes of 106 − 108 M⊙]

2) a high-frequency tail of the primordial GWs 

The GWs produced by these binaries combine to form a stochastic 

background in the very low frequency band.

10−9 − 10−6 Hz 



Very low frequency 
- In this frequency band, the two most plausible sources are

1) the coalescence of massive binary black holes

[Population synthesis estimates based on models of structure formation and 

galaxy growth suggest there should be a substantial population of such 

binaries whose members are black holes of 106 − 108 M⊙]

2) a high-frequency tail of the primordial GWs 

The GWs produced by these binaries combine to form a stochastic 

background in the very low frequency band.

- This background is targeted by pulsar timing observations:

This technique uses the fact that millisecond pulsars are very precise clocks;

indeed, the stability of some pulsars rivals laboratory atomic clocks.

- Three Pulsar Timing Arrays are currently in operation – the EPTA in Europe, 

NANOGrav in the US and PPTA in Australia – sharing data under the aegis of 

the International Pulsar Timing Array (IPTA)

10−9 − 10−6 Hz 



Very low frequency 
The NANOGrav 12.5-year Data Set:
Search For An Isotropic Stochastic Gravitational-Wave Background (2009.04496.)



Ultra low frequency 

- This low frequency GW band is best 
described using wavelength: it consists 
of GWs with c/H0>λ >10−5c/H0. 

- These are waves that vary on length-
scales comparable to the size of our 
Universe! 

- Following inflation, the GWs that are 
produced by this process propagate 
through the Universe. 

- GW barely interact with matter as they 
propagate, just stretching and 
squeezing the primordial plasma in the 
young expanding Universe. 

10−18 Hz< f< 10−13 Hz



Ultra low frequency 

- This stretching and squeezing creates a quadrupolar temperature anisotropy in the 
plasma at recombination, which causes the CMB to be linearly polarized. The GWs thus 
leave an imprint on the CMB.
- Then we expect primordial gravitational waves stemming from the inflationary era of the 
very early Universe. Primordial quantum fields fluctuate and yield space–time ripples at a 
wide range of frequencies. These could in principle be detected as B-mode polarization 
patterns in the CMB radiation, at large angles in the sky. 

10−18 Hz< f< 10−13 Hz



Gravitational 
Universe 

The beauty of General Relativity (GR) is that it is a falsifiable theory

Thus even a single experiment incompatible with a prediction of 

the theory would lead to its invalidation

(For example) To test GR: 

• in strong gravity regime 

• in cosmology 



Tests of 
strong 

gravity and 
non-linear 

regime

Leaving open several questions: 

• Does gravity travel at the speed of light ? YES! From 
GW170817

• Does the graviton have mass? 
• How does gravitational information propagate: Are there 

more than two transverse modes of propagation? 
• Does gravity couple to other dynamical fields, such as, 

massless or massive scalars? 
• What is the structure of spacetime just outside 

astrophysical black holes? Do their spacetimes have 
horizons? 

• Are astrophysical black holes fully described by the Kerr 
metric, as predicted by General Relativity? 

• …

To answer these questions 
and learn about the 
fundamental nature of 
gravity is by observing the 
vibrations of the fabric of 
spacetime itself. 



in cosmology:

Gravitational wave 
maps of resolved 

events: GW 
standard sirens

Stochastic 
backgrounds 

(SGWB)



GW standard sirens

• GWs provide a unique, purely gravitational way to 

measure distance (Schutz 1986)

• As GW detections can be thought of as aural rather than 

optical (Hughes 2003), a more appropriate term for a GW 

standard candle is a “standard siren” 

• BH binary mergers as "standard sirens" to extract 

information on the expansion of the Universe, by 

measuring the expansion history with completely different 

techniques to electromagnetic probes.



GW standard sirens

• Black hole coalescences could serve as 
standard sirens for cosmography by 
providing absolute and direct 
measurements of the luminosity 
distance DL

• One advantage of standard sirens over 
SNIa is that they allow for a direct 
measurement of DL up to large redshift, 
unlike optical measurements, which 
require cross-calibrations of successive 
distance indicators at different scales; 



GW standard sirens

• GWs provide a unique, purely gravitational way to measure distance 

• As GW detections can be thought of as aural rather than optical (Hughes 

2003), a more appropriate term for a GW standard candle is a “standard 

siren” 

• BH binary mergers as "standard sirens" to extract information on the 

expansion of the Universe, by measuring the expansion history with 

completely different techniques to electromagnetic probes.

• Black hole coalescences could serve as standard sirens for cosmography by 

providing absolute and direct measurements of the luminosity distance DL

• One advantage of standard sirens over SNIa is that they allow for a direct 

measurement of DL up to large redshift, unlike optical measurements, 

which require cross-calibrations of successive distance indicators at 

different scales;

• This method has recently been used for the first (albeit still low-precision) 

gravitational measurement of the Hubble constant, using LIGO/VIRGO 

binary neutron star event, GW170817.  

Posterior density of H0 and cos ι from the joint GW-EM analysis (blue 
contours). Shading levels are drawn at every 5% credible level, with 
the 68.3% (1σ, solid) and 95.4% (2σ, dashed) contours in black. Values
of H0 and 1- and 2σ error bands are also displayed from Planck (Planck
Collaboration et al. 2016) and SHoES (Riess et al. 2016). 

1710.05835



Observation of electromagnetic counterparts, from 
which the source redshift can be extracted, is 
required. 

Massive Black 
Hole Binaries.

Extreme Mass 
Ratio Inspirals.

Approaches to standard siren cosmology 

Cosmography with the Einstein Telescope 

Mitra et al. 2021 

Tamanini et al. 2017 

GW standard sirens offer a completely different way to measure distances than standard 
candles (type SNe1a)  and standard rulers (baryon acoustic oscillations).



Cosmology with GW 
measurements 



GWs from binary 
system

• luminosity distance %"

• accumulated GW phase   

• GW frequency

• points from the center of the barycenter frame to the 
system, and hence defines its position on the sky;

• points along the binary’s orbital angular momentum, 
and hence defines its orientation. 

• Redshifted chirp mass

Schematically, a measured binary 
waveform takes the form:



Distance, but not redshift!

• Gravitational waves provide a direct measure of luminosity distance, 
but they give no independent information about redshift

• GWs from a local binary with masses !", !#

• at redshift # is indistinguishable from a local binary with masses 

!", !# → !"
1 + # , !#

1 + #

• In general to measure cosmology, need independent measurement 
of redshift  



Approaches 
to standard 

siren 
cosmology 

• To determine cosmological parameters (e. g. H0)
• To establish luminosity distance-redshift relation  

Using the electromagnetic (EM) 

counterpart

Using a statistical solution-method  

(absence of EM counterparts)



Approaches to standard siren 
cosmology (1)

• EM counterpart case, 
electromagnetic observations 
identify a counterpart to the GW 
source. 

• This can be done by directly 
observing a transient 
electromagnetic source, such as a 
Gamma-Ray Burst (GRB)/afterglow 
or a kilonova

• Short GRBs are known to occur at 
low redshift (z < 0.2) and are 
thought to be the result of binary 
mergers (NS or BH) 

• The redshift can then be 
determined, either directly from the 
EM counterpart, or by identifying 
the host galaxy associated with the 
counterpart and measuring its 
redshift instead. 



Approaches to standard siren 
cosmology (1)
Possible issues…

• Using GRB counterparts for example, host galaxy identification can 

sometimes be unreliable.

• We also require that the emission cone from the GRB is coincident 

with our line of sight. 

• Current estimates [e.g. see Nakar (2007), where they coupled only 

some short-hard GRBs to measure redshifts] show that only a 
small fraction (∼10−3) of BNS events will be useful as standard 
sirens. 

• Then, in general, we have the incompleteness of the catalog!     

[E.g. when the real host is too faint to be detected by the survey 
and thus to be considered for the analysis]. Then, each single 

event posterior distribution for sky position, redshift etc.., will be 

displaced compared to the case in which the true host is included.

• Other systematic error:  coherent peculiar velocity of the merging 

at low redshift could make a misidentification  of the host redshift.



2) Standard 
siren 
cosmology 
without EM 
counterpart 
case: Statistical 
method

• Assuming a source redshift distribution based on galaxy catalogs.                      
Since each GW event typically has a large error volume on the sky, 
then by combining a large number of such sources, a value of the 
cosmic expansion rate can be obtained maximizing the likelihood fit. 
Such a method, however, could be limited to redshifts  z <1-2 where 
galaxy catalogs are complete, see  MacLeod and C. J. Hogan 2008; 
Petiteau et al 2011.

• Namikawa, Nishizawa & Taruya, (2016a, b); Oguri (2016) build up a 
sufficient catalog of GW events that the anisotropies in the 
distribution of events on the sky can be matched to the known 
clustering of large-scale structure. Essentially, one cross-correlates 
galaxies with gravitational-wave standard sirens in order to maximize 
the likelihood of cosmological parameters, and thereby determine 
the distance-redshift relationship. 

• Using a Bayesian formalism to analyse catalogs of NS-NS inspiral
detections Taylor, Grair & Mandel 2012 investigated a novel approach 
to measuring the Hubble constant using GW signals from compact 
binaries by exploiting the narrowness of the distribution of masses of 
the underlying neutron-star population. 



2) Standard siren 
cosmology 

without EM 
counterpart case: 

Cosmological 
inference using 

only GWs

• The Bayesian inference developed by Del Pozzo 2012  is 

useful to facilitate the inclusion of all assumptions and 
prior information about a GW source within a single data 
analysis framework.

• This approach guarantees the minimisation of 
information loss and the possibility of including naturally 
event-specific knowledge (such as the sky position for a 

Gamma Ray Burst-GW coincident observation) in the 

analysis. 

See also Ghosh, Del Pozzo & Ajith 2015



3) Standard siren cosmology without EM 
counterpart case: using tidal effects

The tidal effects provide additional contributions to the 
phase evolution of the gravitational wave signal that break 
a degeneracy between the system’s mass parameters and 
redshift and thereby allow the simultaneous measurement 
of both the effective distance and the redshift for 
individual sources, see Messenger & Read 2012 and Del 
Pozzo Li & Messenger 2017
Appearing at 5th PN order, these effects will be measurable 
using 3rd generation gravitational wave detectors, e.g. ET 

Credit Del Pozzo



• In DB, Raccanelli, Bartolo & Matarrese (1702.01750), we consider the observer frame as 
reference system (the usual calculation is performed in a homogeneous and isotropic 
FLRW Universe, see Laguna et al 2010);

Cosmological perturbation effects on GW luminosity 
distance estimates 
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• In DB, Raccanelli, Bartolo & Matarrese (1702.01750), we consider the observer frame as 
reference system (the usual calculation is performed in a homogeneous and isotropic 
FLRW Universe, see Laguna et al 2010); 

• We consider the local wave zone approximation to define the tetrads at source 
position:
[Note that we are assuming that the observer “at the emitted position” is within a 
region with a comoving distance to the source sufficiently large so that the gravitational 
field is “weak enough” but still “local”, i.e. the gravitational wave wavelength is small 
w.r.t. the comoving distance from the observer] 

• We assume the standard weak-field approximation in general relativity (i.e., for 
simplicity, we are neglecting the post newtonian terms) 

• We consider only the regime called of “quasi- circular” motion (i.e. the approximation 
in which a slowly varying orbital radius is applicable)

• Geometric optics approximation: the propagation of high frequency GWs travelling over 
a smooth background, which varies over scales much larger than the GW wavelengths;

Cosmological perturbation effects on GW luminosity 
distance estimates 



Geometric optics approximation

Isaacson (1967,1968)



Geometric optics approximation

Isaacson (1967, 1968), Bertacca et al. (2017)

and



COSMIC LABORATORY
(cosmic rulers) 

xe

'̅ (

In a generic perturbed Universe we have:

ae   = 2 [1+Δlna] 
xe =  3 +Δx

Δx(z)
What we observe GW is the apparent position at which it 

appears in a given direction n and redshift z (if we know 
the EM of the host galaxy). 

In observers frame the GW geodesics are given by (in 

conformal coordinates)

Δlna (z) = 2 H Δx0 (z) = 2 H [δχ-δx0](z)
Δxi (z) = ni δχ(z) +δxi (z)

4 : comoving distance in the observed frame

" n

) (

3̅ - = 6# − 4 - , 4 - n



•

, and

Bertacca et al. 2017



•

•

•

Bertacca et al. 2017



Computing the modifications of the value of the luminosity density DL
inferred from gravitational waves, due to perturbations, we can write 
the correction to the luminosity distance in Poisson gauge as

where

We can recognize the presence of a velocity term (the first r.h.s. term), 
followed by a lensing contribution, and the final four terms account for 
SW, ISW, volume and Shapiro time-delay effects.

Cosmological perturbation effects on GW luminosity 
distance estimates 

Bertacca et al. 2017



Computing the modifications of the value of the luminosity density DL
inferred from gravitational waves, due to perturbations, we can write 
the correction to the luminosity distance in Poisson gauge as

where

To numerically compute the magnitude of this effect, we calculate the 
mean fluctuation of the effect, at any given redshift, as 

Cosmological perturbation effects on GW luminosity 
distance estimates 

Bertacca et al. 2017



Total correction to luminosity distance 
estimates due to perturbations 

Points show the predicted precision in measurements of the luminosity distance, at 

any redshift, for the Einstein Telescope (green points) [Taylor et al 2012], DECIGO 

(red points) and the Big Bang Observer (black points) [Camera & Nishizawa 2013]

(DB, Raccanelli, Bartolo & Matarrese,1702.01750)

~10%!



Total correction to luminosity distance
estimates due to perturbations

(DB, Raccanelli, Bartolo & Matarrese,1702.01750)

Doppler effect

Lensing effect

• peculiar velocities may be important for z << 1 
• weak lensing will be important for z > 1 



Lensing become important

with weak lensing errors in DL if weak lensing errors can be corrected

- These sources are however affected by weak gravitational lensing by 

intervening inhomogeneities in the cosmic mass distribution. 

- This introduces changes of typically a few percent (but occasionally much 

larger) in the flux, while not significantly affecting the redshift, and thus 

provides a source of noise in the DL(z) relation (Hirata, Holtz & Cutler 2010)

Sathyaprakash et al. 2009



Making use of the weak-lensing magnification
effect on a GW from a compact binary object

In [Camera & Nishizawa, 2013] they showed that it is possible to discriminate the 
concordance ΛCDM cosmological model and up-to-date competing alternatives as
DE or MG theories

FoM (w0, wa) (left panel) and FoM (μ0, η0) (right panel) as a function of the fraction of 
detected sources for DECIGO (squares, red) and ET (diamonds, green). Solid lines refer to 
GW detectors only, whilst dashed lines show the results in combination with Planck priors



GW luminosity distance in the context of scalar-tensor 
theories of gravity 

• In presence of DE/MG  the GW luminosity distance generally differs from the 
one traced by electromagnetic (EM) signals, both at the unperturbed, 
background level [E. Belgacem et al. (2017, 2018)]

with  some function            which modifies the friction term in the propagation 
equation. 
• This affects the amplitude of a GW propagating across cosmological distances, 

giving rise to a notion of “gravitational-wave luminosity distance” 



GW luminosity distance in the context of scalar-tensor 
theories of gravity 

• In presence of DE/MG  the GW luminosity distance generally differs from the 
one traced by electromagnetic (EM) signals, both at the unperturbed, 
background level [E. Belgacem et al. (2017, 2018)] and in its large-scale 
fluctuations [Garoffolo +DB et al. (2019), Dalang et al. (2019)]. 

• Fluctuations in the EM luminosity distance are affected by the DE field only 
indirectly while linearized fluctuations of the GW luminosity distance contain 
contributions directly proportional to the clustering of the DE field [Garoffolo
+DB et al. (2019, 2020)]. 



GW luminosity distance in the context of scalar-tensor 
theories of gravity 

• In presence of DE/MG  the GW luminosity distance generally differs from the 
one traced by electromagnetic (EM) signals, both at the unperturbed, 
background level [E. Belgacem et al. (2017, 2018)] and in its large-scale 
fluctuations [Garoffolo +DB et al. (2019), Dalang et al. (2019)]. 

• Fluctuations in the EM luminosity distance are affected by the DE field only 
indirectly while linearized fluctuations of the GW luminosity distance contain 
contributions directly proportional to the clustering of the DE field [Garoffolo
+DB et al. (2019, 2020)]. 

• In [Garoffolo +DB et al. (2020)] exploiting the synergy in supernovae and 
gravitational wave distance measurements, we build a joint estimator that 
directly probes DE/MG fluctuations, providing a conclusive evidence for their 
existence in case of detection. 



Stochastic Gravitational Wave
Background (SGWB)

• A SGWB radiation is a superposition of gravitational-wave signals 
that are either too weak or too numerous to individually detect. 

• The SGWB is expected to be a key observable for GW 
interferometry. 

• Its detection will open a new window on early universe 
cosmology and on the astrophysics of compact objects. 

• But despite the fact that one cannot resolve the individual signals 
that comprise the background, the detection of a gravitational-
wave background (GWB) will provide information about the 
statistical properties (or population properties) of the source. 

• The detection and characterisation of the SGWB is one of the 
main goal of the Gravitational Waves (GW) search. 

Figure credit: NASA



The combined GW signal from such events 
occurring throughout the Universe will 
produce:

- A Cosmological GW background signature 
of the early Universe
# Inflationary epoch, preheating, reheating 

(10−18 − 108 Hz)

# Phase transitions (the spectrum has a 
narrow band feature peaking at 10−12 Hz 
and a broad band component in the 10−5 −1 
Hz band. )                

# Cosmic strings (10−10 − 1010 Hz)

# Alternative cosmologies…

(e.g. see Maggiore 2000, Guzzetti et al. 2016, 
Caprini & Figueroa 2018) 

- An astrophysical GW background 
(ASGWB)
# Dominated by compact binary 

coalescences: BBHs, BNSs, BH-NSs

# Supernova

Credit Romano & Cornish (2017)   

Different types of SGWB Detectors and potential sources of GWBs across the GW spectrum. 



SGWB anisotropies:

• Relaxing the assumption of isotropy and generalizing the search for a 
stochastic signal to the case of arbitrary angular distribution, we find a 
direction-dependent contribution

• Such a quantity will have both a background (monopole) contribution in 
the observed frame, which is, by definition, homogeneous and isotropic, 
i.e.  ⁄Ω9: 4+ and a direction-dependent contribution ΔΩ9:(-; , Ω;)



A derivation of the angular power spectrum of cosmological anisotropies, using a 
Boltzmann approach, has been obtained in [Alba & Maldacena 2016 (1512.01531), 
Contaldi 2017 (1609.08168) , Bartolo et al. 2019 (1908.00527)] 

Why important?  
• to disentangle cosmological from astrophysical SGWB
• to probe evolution of cosmological perturbations 
• to provide a new observable to probe primordial non-Gaussianity, in particular 

primordial non-Gaussianity of GWs!!      
• to provide a new way to characterize various generation mechanisms of 

primordial SGWB 

Anisotropies of SGWB from inflation



Angular anisotropies of the GW energy density

• Angular anisotropies of the GW energy density

• Imprinted both at production of GWs and by propagation through the 
large-scale cosmological perturbations  

2

(the bispectrum) of the GW energy density.
For brevity reasons, this Letter contains only results

under the simplest conditions. In a companion paper
[28] we shall present the details of these computations,
extend them to include the GW propagation to second
order in perturbations, as well as develop a more extended
analysis of the GW bispectrum.

Boltzmann equation for GWs. We consider a distribu-
tion f = f(⌘, xi

, q, n̂
i) of GWs as a function of their posi-

tion x
µ and momentum p

µ = dx
µ
/d�, where � is an a�ne

parameter along the GW trajectory. This distribution
obeys the Boltzmann equation L[f ] = C[f(�)] + I[f(�)],
where the Liouville term is L ⌘ d/d�, while C and I
account respectively for the collision of GWs along their
patch, and for their emissivity from cosmological and as-
trophysical sources [15]. The collision among GWs a↵ects
the distribution at higher orders (in an expansion series
in the gravitational strength 1/MPlanck ) with respect to
the ones we are considering, and can be disregarded. The
emissivity can be due to astrophysical processes (such as
black-holes merging) in the relatively late universe, as
well as cosmological processes, such as inflation or phase
transitions. In this work we are only interested in the
stochastic GW background of cosmological origin, so we
treat the emissivity term as an initial condition on the
GW distribution (see [29] and Refs. therein for a discus-
sion on collisional e↵ects involving gravitons). This leads
us to study the free Boltzmann equation, df/d⌘ = 0 in
the perturbed universe. Specifically, we consider scalar
(� and  ) and tensor (hij , taken to be transverse and
traceless) perturbations in the so-called Poisson gauge,
around a homogeneous and isotropic background, giving
the line element

ds
2 = a

2(⌘)
⇥
�e

2�
d⌘

2 + (e�2 
�ij + hij)dx

i
dx

j
⇤
, (1)

where a(⌘) is the scale factor, and ⌘ is conformal time.
Dividing the free Boltzmann equation by p

0 leads to
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where n̂ ⌘ p̂ is the direction of motion of the GWs, while
q ⌘ |~p|a is the comoving momentum, that we use (as op-
posed to the physical one, that was used in [15], follow-
ing the standard computation done for the CMB photons
propagation [30]) as it simplifies the equation (3) below.
The first two terms in (2) encode free streaming, that is
the propagation of perturbations on all scales. At higher
order this term also includes gravitational time delay ef-
fects. The third term causes the red-shifting of gravitons,
including the Sachs-Wolfe (SW), integrated Sachs-Wolfe
(ISW) and Rees-Sciama (RS) e↵ects. The fourth term
vanishes to first order and describes the e↵ect of gravita-
tional lensing. We shall refer to these terms as the free-
streaming, redshift and lensing terms, respectively in a

similar way to CMB physics. Keeping only the terms up
to first order in the perturbations, eq. (2) gives
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In analogy to the split in (1) we also assume that

the GWs distribution has a dominant, homogeneous and
isotropic contribution, with distribution function f̄ , plus
a subdominant contribution �f . The two functions are
obtained by solving eq. (3) at zeroth and first order in
perturbations. Doing so, one immediately finds that any
function f̄(q) of the comoving momentum solves (3) at
zeroth order. As a consequence, the associated number
density n /

´
d
3
p f̄(q) is diluted as a

�3 as the universe
expands. This is also the case for CMB photons, whose
distribution function f̄CMB = (ep/T � 1)�1 is only con-
trolled by the ratio p/T / p a = q, where T is the tem-
perature of the CMB bath. This is a consequence of the
free particle propagation in an expanding background,
and it does not rely on the distribution being thermal.

The subdominant anisotropic component �f can be
present as an initial condition. However, even if it is
initially absent, eq. (3) shows that this anisotropy is pro-
duced by the propagation of the isotropic component f̄

in the perturbed background. Assuming that @f̄/@q 6= 0
(otherwise also the solution of �f becomes trivial) it is
convenient to rescale the perturbed part of the distribu-
tion function as

�f ⌘ �q
@f̄

@q
� (⌘, ~x, q, n̂) . (4)

In this variable and in Fourier space eq. (3) gives

�0 + i k µ� = S(⌘,~k, n̂) , (5)

where from now on prime denotes a derivative with re-
spect to conformal time, µ is the cosine of the angle
between ~k and n̂, while the source function is S =
 0 � ik µ�� 1

2n
i
n
j
h
0
ij . As we now show, the quantity �

can be immediately related to the anisotropic component
of the GWs energy density, ⇢GW ⌘

´
d
3
p p f . It is cus-

tomary to parametrize the GW energy density measured
at the time ⌘ at the location ~x in terms of its fractional
contribution ⌦GW through

⇢GW (⌘, ~x) ⌘ ⇢crit

ˆ
d ln q⌦GW (⌘, ~x, q) , (6)

where ⇢crit = 3H2
M

2
p is the critical energy density of the

universe, and H is the Hubble rate. Nearly all studies
assume ⌦GW to be homogeneous. Since we are interested
in its inhomogeneous and anisotropic component, we have
allowed ⌦GW to depend on space. We account for the
anisotropic dependence by defining !GW through ⌦GW =´
d
2
n̂!GW(⌘, ~x, q, n̂)/4⇡, and by introducing the density
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where the Liouville term is L ⌘ d/d�, while C and I
account respectively for the collision of GWs along their
patch, and for their emissivity from cosmological and as-
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in the gravitational strength 1/MPlanck ) with respect to
the ones we are considering, and can be disregarded. The
emissivity can be due to astrophysical processes (such as
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where n̂ ⌘ p̂ is the direction of motion of the GWs, while
q ⌘ |~p|a is the comoving momentum, that we use (as op-
posed to the physical one, that was used in [15], follow-
ing the standard computation done for the CMB photons
propagation [30]) as it simplifies the equation (3) below.
The first two terms in (2) encode free streaming, that is
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In analogy to the split in (1) we also assume that

the GWs distribution has a dominant, homogeneous and
isotropic contribution, with distribution function f̄ , plus
a subdominant contribution �f . The two functions are
obtained by solving eq. (3) at zeroth and first order in
perturbations. Doing so, one immediately finds that any
function f̄(q) of the comoving momentum solves (3) at
zeroth order. As a consequence, the associated number
density n /
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p f̄(q) is diluted as a

�3 as the universe
expands. This is also the case for CMB photons, whose
distribution function f̄CMB = (ep/T � 1)�1 is only con-
trolled by the ratio p/T / p a = q, where T is the tem-
perature of the CMB bath. This is a consequence of the
free particle propagation in an expanding background,
and it does not rely on the distribution being thermal.

The subdominant anisotropic component �f can be
present as an initial condition. However, even if it is
initially absent, eq. (3) shows that this anisotropy is pro-
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Propagation through large-scale 
cosmological perturbations
(both scalar and tensor!!)

inflation

“Emission surface” of gravitons 
at the end of inflation!!! 

Two contributions to anisotropies of SGWB:  

1. At production 

2. by GW propagation up to the observer

similar approach of C. Contaldi, 
Phys.Lett. B771 (2017)

Credit Nicola Bartolo

Observer

Angular anisotropies of the GW energy density from inflation
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[28] we shall present the details of these computations,
extend them to include the GW propagation to second
order in perturbations, as well as develop a more extended
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treat the emissivity term as an initial condition on the
GW distribution (see [29] and Refs. therein for a discus-
sion on collisional e↵ects involving gravitons). This leads
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where n̂ ⌘ p̂ is the direction of motion of the GWs, while
q ⌘ |~p|a is the comoving momentum, that we use (as op-
posed to the physical one, that was used in [15], follow-
ing the standard computation done for the CMB photons
propagation [30]) as it simplifies the equation (3) below.
The first two terms in (2) encode free streaming, that is
the propagation of perturbations on all scales. At higher
order this term also includes gravitational time delay ef-
fects. The third term causes the red-shifting of gravitons,
including the Sachs-Wolfe (SW), integrated Sachs-Wolfe
(ISW) and Rees-Sciama (RS) e↵ects. The fourth term
vanishes to first order and describes the e↵ect of gravita-
tional lensing. We shall refer to these terms as the free-
streaming, redshift and lensing terms, respectively in a
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In analogy to the split in (1) we also assume that

the GWs distribution has a dominant, homogeneous and
isotropic contribution, with distribution function f̄ , plus
a subdominant contribution �f . The two functions are
obtained by solving eq. (3) at zeroth and first order in
perturbations. Doing so, one immediately finds that any
function f̄(q) of the comoving momentum solves (3) at
zeroth order. As a consequence, the associated number
density n /

´
d
3
p f̄(q) is diluted as a

�3 as the universe
expands. This is also the case for CMB photons, whose
distribution function f̄CMB = (ep/T � 1)�1 is only con-
trolled by the ratio p/T / p a = q, where T is the tem-
perature of the CMB bath. This is a consequence of the
free particle propagation in an expanding background,
and it does not rely on the distribution being thermal.

The subdominant anisotropic component �f can be
present as an initial condition. However, even if it is
initially absent, eq. (3) shows that this anisotropy is pro-
duced by the propagation of the isotropic component f̄

in the perturbed background. Assuming that @f̄/@q 6= 0
(otherwise also the solution of �f becomes trivial) it is
convenient to rescale the perturbed part of the distribu-
tion function as
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� (⌘, ~x, q, n̂) . (4)

In this variable and in Fourier space eq. (3) gives

�0 + i k µ� = S(⌘,~k, n̂) , (5)

where from now on prime denotes a derivative with re-
spect to conformal time, µ is the cosine of the angle
between ~k and n̂, while the source function is S =
 0 � ik µ�� 1
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can be immediately related to the anisotropic component
of the GWs energy density, ⇢GW ⌘
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p p f . It is cus-

tomary to parametrize the GW energy density measured
at the time ⌘ at the location ~x in terms of its fractional
contribution ⌦GW through

⇢GW (⌘, ~x) ⌘ ⇢crit

ˆ
d ln q⌦GW (⌘, ~x, q) , (6)

where ⇢crit = 3H2
M

2
p is the critical energy density of the

universe, and H is the Hubble rate. Nearly all studies
assume ⌦GW to be homogeneous. Since we are interested
in its inhomogeneous and anisotropic component, we have
allowed ⌦GW to depend on space. We account for the
anisotropic dependence by defining !GW through ⌦GW =´
d
2
n̂!GW(⌘, ~x, q, n̂)/4⇡, and by introducing the density

Boltzmann equation approach

Gravitational effects that imprint 
anisotropies during propagation 

Free streaming: 
keeps memory of initial conditions!!! 
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where n̂ ⌘ p̂ is the direction of motion of the GWs, while
q ⌘ |~p|a is the comoving momentum, that we use (as op-
posed to the physical one, that was used in [15], follow-
ing the standard computation done for the CMB photons
propagation [30]) as it simplifies the equation (3) below.
The first two terms in (2) encode free streaming, that is
the propagation of perturbations on all scales. At higher
order this term also includes gravitational time delay ef-
fects. The third term causes the red-shifting of gravitons,
including the Sachs-Wolfe (SW), integrated Sachs-Wolfe
(ISW) and Rees-Sciama (RS) e↵ects. The fourth term
vanishes to first order and describes the e↵ect of gravita-
tional lensing. We shall refer to these terms as the free-
streaming, redshift and lensing terms, respectively in a

similar way to CMB physics. Keeping only the terms up
to first order in the perturbations, eq. (2) gives
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In analogy to the split in (1) we also assume that

the GWs distribution has a dominant, homogeneous and
isotropic contribution, with distribution function f̄ , plus
a subdominant contribution �f . The two functions are
obtained by solving eq. (3) at zeroth and first order in
perturbations. Doing so, one immediately finds that any
function f̄(q) of the comoving momentum solves (3) at
zeroth order. As a consequence, the associated number
density n /

´
d
3
p f̄(q) is diluted as a

�3 as the universe
expands. This is also the case for CMB photons, whose
distribution function f̄CMB = (ep/T � 1)�1 is only con-
trolled by the ratio p/T / p a = q, where T is the tem-
perature of the CMB bath. This is a consequence of the
free particle propagation in an expanding background,
and it does not rely on the distribution being thermal.

The subdominant anisotropic component �f can be
present as an initial condition. However, even if it is
initially absent, eq. (3) shows that this anisotropy is pro-
duced by the propagation of the isotropic component f̄

in the perturbed background. Assuming that @f̄/@q 6= 0
(otherwise also the solution of �f becomes trivial) it is
convenient to rescale the perturbed part of the distribu-
tion function as

�f ⌘ �q
@f̄

@q
� (⌘, ~x, q, n̂) . (4)

In this variable and in Fourier space eq. (3) gives

�0 + i k µ� = S(⌘,~k, n̂) , (5)

where from now on prime denotes a derivative with re-
spect to conformal time, µ is the cosine of the angle
between ~k and n̂, while the source function is S =
 0 � ik µ�� 1

2n
i
n
j
h
0
ij . As we now show, the quantity �

can be immediately related to the anisotropic component
of the GWs energy density, ⇢GW ⌘

´
d
3
p p f . It is cus-

tomary to parametrize the GW energy density measured
at the time ⌘ at the location ~x in terms of its fractional
contribution ⌦GW through

⇢GW (⌘, ~x) ⌘ ⇢crit

ˆ
d ln q⌦GW (⌘, ~x, q) , (6)

where ⇢crit = 3H2
M

2
p is the critical energy density of the

universe, and H is the Hubble rate. Nearly all studies
assume ⌦GW to be homogeneous. Since we are interested
in its inhomogeneous and anisotropic component, we have
allowed ⌦GW to depend on space. We account for the
anisotropic dependence by defining !GW through ⌦GW =´
d
2
n̂!GW(⌘, ~x, q, n̂)/4⇡, and by introducing the density

3

contrast �GW ⌘ �!GW(⌘, ~x, q, n̂)/!̄GW(⌘, q). Using eq.
(4), one then finds

�GW =


4� @ ln ⌦̄GW (⌘, q)

@ ln q

�
� (⌘, ~x, q, n̂) , (7)

with ⌦̄GW the homogeneous, isotropic component of ⌦GW.

In the CMB case, by inserting the definition (4) in the
Planck distribution, and expanding to first order, one
finds �CMB = �T/T . The main di↵erence between the
CMB and the GW case is that, before recombination, the
collision term between photons and baryons suppresses
any existing temperature anisotropy, thus removing any
memory of the initial state. The observed temperature
anisotropies �T/T arise since recombination, following an
equation analogous to (5), with a source that, to first or-
der, is independent from the energy of the CMB photons.
While in the CMB this dependence arises only to second
order in perturbations, a significantly greater dependence
can be present in the GWs distribution, as an initial con-
dition. In the following, we first compute and discuss
the cosmological correlators of the GW anisotropies, and
we then show through a concrete example that they can
indeed have a significant dependence on frequency.

Correlators of GW anisotropies and non-Gaussianity.
As it is standard [30], we express each of the sources
appearing in eq. (5) as a mode function times an ini-
tial variable that is constant at large scales, assuming
for simplicity adiabatic scalar perturbations, and whose
statistical properties have been set well before the propa-
gation stage that we are considering (for instance dur-
ing inflation, or during some early phase transition).
Therefore, the scalar modes are (disregarding anisotropic
stresses as for example those due to the relic neutrinos)

 = � ⌘ T�(⌘, k) ⇣̂(~k); we then decompose the tensor
modes as hij ⌘

P
�=±2 eij,�(k̂)h(⌘, k)⇠̂�(k

i), where the
sum is over right and left-handed (respectively � = ±2)
circular polarizations, and the polarization operators are
constructed as in [25]. We insert these expressions in
the source function in (5), and solve for �. We then
follow the treatment done for CMB perturbations, and
we expand the solution in spherical harmonics, �(n̂) =P

`

P`
m=�` �`m Y`m(n̂), where we recall that n̂ is the di-

rection of motion of the GWs, and so the direction at
which the GWs arrive on our sky. The multipoles �`m
are the sum of three contributions. The first contribution
arises from the initial conditions,

�`m,I (q)

4⇡ (�i)`
=

ˆ
d
3
k

(2⇡)3
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~k, q
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⇥
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⇤
,

(8)
where ⌘0 denotes the present time, and we set our location
to ~x0 = 0. We also remark that this term in general
depends on q. The second contribution is due to the

scalar sources in eq. (5)
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(9)

where the scalar transfer function T (0)
` is the sum of

a term analogous to the SW e↵ect for CMB photons,
T�(⌘in, k) j`[k(⌘0 � ⌘in)], plus the analog of the ISW
term,

´ ⌘0

⌘in
d⌘

0 [T 0
 (⌘, k) + T

0
�(⌘, k)] j`[k(⌘ � ⌘in)]. Finally,

the third contribution �`m,T is due to the tensor modes
in eq. (5), and it is formally analog to eq. (9),
with the product ⇣̂Y

⇤
`m replaced by the combinationP

�=±2 ⇠̂�(
~k)��Y

⇤
`m(⌦k), involving the spin-2 spherical

harmonics, and with the scalar transfer function replaced

by the tensor one T (±2)
` (k, ⌘0, ⌘in), given by

T (±2)
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We are interested in statistical correlators of the
anisotropies. Under the assumption of statistical homo-
geneity and isotropy, the 2-point and 3-point correlators
of ⇣̂ are expressed in terms of, respectively, the scalar
power spectrum and bispectrum through h⇣(~k)⇣⇤(~k0)i0 =
(2⇡2

/k
3)P (0)(k) and h⇣3(~ki)i0 = B

(0)(ki) (we use the
standard notation of the prime to eliminate the mo-
mentum conservation Dirac delta and the (2⇡)3 coef-
ficient). Analogously, correlators P

(�) and B
(�) can

also be defined for the two tensor polarizations. More-
over, we impose correlators of the same structure for the
initial conditions, namely h�(⌘in, ~k, q)�⇤(⌘in, ~k0, q)i0 =
(2⇡2

/k
3)P (I)(k) and for the bispectrum B

(I). In this
work, we assume that the di↵erent contributions are
uncorrelated. Under these assumptions, one obtains
h�`m�⇤`0m0i ⌘ �``0 �mm0 eC` = �``0 �mm0 [ eC`,I(q) + eC`,S +
eC`,T ], where we denote the correlators with a tilde to
distinguish them from the CMB case. The contribution
from the initial condition reads,

eC`,I (q)

4⇡
=

ˆ
dk

k
P

(I) (q, k) j2` [k (⌘0 � ⌘in)] , (11)

where again we stress the possible frequency dependence.
The other two terms are

eC`,S + eC`,T

4⇡
=

X

↵=0,±2

ˆ
dk

k
P

(↵) (k) T (↵) 2
` (k, ⌘0, ⌘in) .

(12)
At large scales, this contribution is dominated by the

term proportional to the initial value of � in T (0)
` (the

analog of the SW contribution for the CMB). For modes
that re-enter the horizon during matter domination (as it
is the case for those that give the large-scale anisotropies
that we are considering), T� = 3/5 at early times [30].

In the case of CMB

N.B.: fixed by Planckian 
distribution in the case of 
CMB 
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contrast �GW ⌘ �!GW(⌘, ~x, q, n̂)/!̄GW(⌘, q). Using eq.
(4), one then finds
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with ⌦̄GW the homogeneous, isotropic component of ⌦GW.

In the CMB case, by inserting the definition (4) in the
Planck distribution, and expanding to first order, one
finds �CMB = �T/T . The main di↵erence between the
CMB and the GW case is that, before recombination, the
collision term between photons and baryons suppresses
any existing temperature anisotropy, thus removing any
memory of the initial state. The observed temperature
anisotropies �T/T arise since recombination, following an
equation analogous to (5), with a source that, to first or-
der, is independent from the energy of the CMB photons.
While in the CMB this dependence arises only to second
order in perturbations, a significantly greater dependence
can be present in the GWs distribution, as an initial con-
dition. In the following, we first compute and discuss
the cosmological correlators of the GW anisotropies, and
we then show through a concrete example that they can
indeed have a significant dependence on frequency.

Correlators of GW anisotropies and non-Gaussianity.
As it is standard [30], we express each of the sources
appearing in eq. (5) as a mode function times an ini-
tial variable that is constant at large scales, assuming
for simplicity adiabatic scalar perturbations, and whose
statistical properties have been set well before the propa-
gation stage that we are considering (for instance dur-
ing inflation, or during some early phase transition).
Therefore, the scalar modes are (disregarding anisotropic
stresses as for example those due to the relic neutrinos)

 = � ⌘ T�(⌘, k) ⇣̂(~k); we then decompose the tensor
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i), where the
sum is over right and left-handed (respectively � = ±2)
circular polarizations, and the polarization operators are
constructed as in [25]. We insert these expressions in
the source function in (5), and solve for �. We then
follow the treatment done for CMB perturbations, and
we expand the solution in spherical harmonics, �(n̂) =P
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m=�` �`m Y`m(n̂), where we recall that n̂ is the di-

rection of motion of the GWs, and so the direction at
which the GWs arrive on our sky. The multipoles �`m
are the sum of three contributions. The first contribution
arises from the initial conditions,
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where ⌘0 denotes the present time, and we set our location
to ~x0 = 0. We also remark that this term in general
depends on q. The second contribution is due to the

scalar sources in eq. (5)
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where the scalar transfer function T (0)
` is the sum of

a term analogous to the SW e↵ect for CMB photons,
T�(⌘in, k) j`[k(⌘0 � ⌘in)], plus the analog of the ISW
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We are interested in statistical correlators of the
anisotropies. Under the assumption of statistical homo-
geneity and isotropy, the 2-point and 3-point correlators
of ⇣̂ are expressed in terms of, respectively, the scalar
power spectrum and bispectrum through h⇣(~k)⇣⇤(~k0)i0 =
(2⇡2

/k
3)P (0)(k) and h⇣3(~ki)i0 = B

(0)(ki) (we use the
standard notation of the prime to eliminate the mo-
mentum conservation Dirac delta and the (2⇡)3 coef-
ficient). Analogously, correlators P

(�) and B
(�) can

also be defined for the two tensor polarizations. More-
over, we impose correlators of the same structure for the
initial conditions, namely h�(⌘in, ~k, q)�⇤(⌘in, ~k0, q)i0 =
(2⇡2

/k
3)P (I)(k) and for the bispectrum B

(I). In this
work, we assume that the di↵erent contributions are
uncorrelated. Under these assumptions, one obtains
h�`m�⇤`0m0i ⌘ �``0 �mm0 eC` = �``0 �mm0 [ eC`,I(q) + eC`,S +
eC`,T ], where we denote the correlators with a tilde to
distinguish them from the CMB case. The contribution
from the initial condition reads,

eC`,I (q)

4⇡
=

ˆ
dk

k
P

(I) (q, k) j2` [k (⌘0 � ⌘in)] , (11)

where again we stress the possible frequency dependence.
The other two terms are
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At large scales, this contribution is dominated by the

term proportional to the initial value of � in T (0)
` (the

analog of the SW contribution for the CMB). For modes
that re-enter the horizon during matter domination (as it
is the case for those that give the large-scale anisotropies
that we are considering), T� = 3/5 at early times [30].

Angular anisotropies of the GW energy density from inflation
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where we have defined the three components
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which we compute in three di↵erent subsections
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and, for simplicity, we assume that the initial condition does not depend on
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⌘
= 4⇡

X

`

`X

m=�`

(�i)` j` (ky)Y`m

⇣
k̂

⌘
Y

⇤
`m

(ŷ)

(50)

7

The formal solution can be also written as
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Disregarding the isotropic part,
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Using the above relation for the Wigner elements
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4.4 Summary
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with T� = T in the adiabatic case, and with the tensor polarization opera-
tors normalized such that e⇤
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where the three terms are
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and we defined
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The 4 pieces in (74) - the initial condition, the scalar, and the two tensors -
have a nearly identical structure.
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3

contrast �GW ⌘ �!GW(⌘, ~x, q, n̂)/!̄GW(⌘, q). Using eq.
(4), one then finds

�GW =


4� @ ln ⌦̄GW (⌘, q)

@ ln q

�
� (⌘, ~x, q, n̂) , (7)

with ⌦̄GW the homogeneous, isotropic component of ⌦GW.

In the CMB case, by inserting the definition (4) in the
Planck distribution, and expanding to first order, one
finds �CMB = �T/T . The main di↵erence between the
CMB and the GW case is that, before recombination, the
collision term between photons and baryons suppresses
any existing temperature anisotropy, thus removing any
memory of the initial state. The observed temperature
anisotropies �T/T arise since recombination, following an
equation analogous to (5), with a source that, to first or-
der, is independent from the energy of the CMB photons.
While in the CMB this dependence arises only to second
order in perturbations, a significantly greater dependence
can be present in the GWs distribution, as an initial con-
dition. In the following, we first compute and discuss
the cosmological correlators of the GW anisotropies, and
we then show through a concrete example that they can
indeed have a significant dependence on frequency.

Correlators of GW anisotropies and non-Gaussianity.
As it is standard [30], we express each of the sources
appearing in eq. (5) as a mode function times an ini-
tial variable that is constant at large scales, assuming
for simplicity adiabatic scalar perturbations, and whose
statistical properties have been set well before the propa-
gation stage that we are considering (for instance dur-
ing inflation, or during some early phase transition).
Therefore, the scalar modes are (disregarding anisotropic
stresses as for example those due to the relic neutrinos)

 = � ⌘ T�(⌘, k) ⇣̂(~k); we then decompose the tensor
modes as hij ⌘

P
�=±2 eij,�(k̂)h(⌘, k)⇠̂�(k

i), where the
sum is over right and left-handed (respectively � = ±2)
circular polarizations, and the polarization operators are
constructed as in [25]. We insert these expressions in
the source function in (5), and solve for �. We then
follow the treatment done for CMB perturbations, and
we expand the solution in spherical harmonics, �(n̂) =P

`

P`
m=�` �`m Y`m(n̂), where we recall that n̂ is the di-

rection of motion of the GWs, and so the direction at
which the GWs arrive on our sky. The multipoles �`m
are the sum of three contributions. The first contribution
arises from the initial conditions,
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(8)
where ⌘0 denotes the present time, and we set our location
to ~x0 = 0. We also remark that this term in general
depends on q. The second contribution is due to the

scalar sources in eq. (5)
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where the scalar transfer function T (0)
` is the sum of

a term analogous to the SW e↵ect for CMB photons,
T�(⌘in, k) j`[k(⌘0 � ⌘in)], plus the analog of the ISW
term,
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 (⌘, k) + T

0
�(⌘, k)] j`[k(⌘ � ⌘in)]. Finally,

the third contribution �`m,T is due to the tensor modes
in eq. (5), and it is formally analog to eq. (9),
with the product ⇣̂Y

⇤
`m replaced by the combinationP

�=±2 ⇠̂�(
~k)��Y

⇤
`m(⌦k), involving the spin-2 spherical
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by the tensor one T (±2)
` (k, ⌘0, ⌘in), given by
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We are interested in statistical correlators of the
anisotropies. Under the assumption of statistical homo-
geneity and isotropy, the 2-point and 3-point correlators
of ⇣̂ are expressed in terms of, respectively, the scalar
power spectrum and bispectrum through h⇣(~k)⇣⇤(~k0)i0 =
(2⇡2

/k
3)P (0)(k) and h⇣3(~ki)i0 = B

(0)(ki) (we use the
standard notation of the prime to eliminate the mo-
mentum conservation Dirac delta and the (2⇡)3 coef-
ficient). Analogously, correlators P

(�) and B
(�) can

also be defined for the two tensor polarizations. More-
over, we impose correlators of the same structure for the
initial conditions, namely h�(⌘in, ~k, q)�⇤(⌘in, ~k0, q)i0 =
(2⇡2

/k
3)P (I)(k) and for the bispectrum B

(I). In this
work, we assume that the di↵erent contributions are
uncorrelated. Under these assumptions, one obtains
h�`m�⇤`0m0i ⌘ �``0 �mm0 eC` = �``0 �mm0 [ eC`,I(q) + eC`,S +
eC`,T ], where we denote the correlators with a tilde to
distinguish them from the CMB case. The contribution
from the initial condition reads,

eC`,I (q)

4⇡
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ˆ
dk

k
P

(I) (q, k) j2` [k (⌘0 � ⌘in)] , (11)

where again we stress the possible frequency dependence.
The other two terms are

eC`,S + eC`,T
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` (k, ⌘0, ⌘in) .

(12)
At large scales, this contribution is dominated by the

term proportional to the initial value of � in T (0)
` (the

analog of the SW contribution for the CMB). For modes
that re-enter the horizon during matter domination (as it
is the case for those that give the large-scale anisotropies
that we are considering), T� = 3/5 at early times [30].
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CMB and the GW case is that, before recombination, the
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equation analogous to (5), with a source that, to first or-
der, is independent from the energy of the CMB photons.
While in the CMB this dependence arises only to second
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dition. In the following, we first compute and discuss
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we then show through a concrete example that they can
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As it is standard [30], we express each of the sources
appearing in eq. (5) as a mode function times an ini-
tial variable that is constant at large scales, assuming
for simplicity adiabatic scalar perturbations, and whose
statistical properties have been set well before the propa-
gation stage that we are considering (for instance dur-
ing inflation, or during some early phase transition).
Therefore, the scalar modes are (disregarding anisotropic
stresses as for example those due to the relic neutrinos)
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i), where the
sum is over right and left-handed (respectively � = ±2)
circular polarizations, and the polarization operators are
constructed as in [25]. We insert these expressions in
the source function in (5), and solve for �. We then
follow the treatment done for CMB perturbations, and
we expand the solution in spherical harmonics, �(n̂) =P
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m=�` �`m Y`m(n̂), where we recall that n̂ is the di-

rection of motion of the GWs, and so the direction at
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where ⌘0 denotes the present time, and we set our location
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We are interested in statistical correlators of the
anisotropies. Under the assumption of statistical homo-
geneity and isotropy, the 2-point and 3-point correlators
of ⇣̂ are expressed in terms of, respectively, the scalar
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mentum conservation Dirac delta and the (2⇡)3 coef-
ficient). Analogously, correlators P
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work, we assume that the di↵erent contributions are
uncorrelated. Under these assumptions, one obtains
h�`m�⇤`0m0i ⌘ �``0 �mm0 eC` = �``0 �mm0 [ eC`,I(q) + eC`,S +
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At large scales, this contribution is dominated by the

term proportional to the initial value of � in T (0)
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analog of the SW contribution for the CMB). For modes
that re-enter the horizon during matter domination (as it
is the case for those that give the large-scale anisotropies
that we are considering), T� = 3/5 at early times [30].
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- large-scale curvature perturbation from inflation 

- large-scale gravitational waves  

5 Two point correlators
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we those see that the 4 terms in (76) produce a formally identical re-
sult; this is particularly true, considering the fact that the spin-weighted
spherical harmonics have the same orthonormality condition as the spherical
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In a completely identical way, the 2-point correlator of the scalar sourced
term evaluates to
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Bispectra of anisotropies: will be generated by a non-vanishing primordial (inflationary) 

non-Gaussianity of the large-scale curvature perturbations and of the large-scale primordial 

gravitational waves

3-point function of SGWB anisotropies at interferometer scales can be 

a sensitive probe of inflationary non-Gaussianity in the gravitational wave sector!

7.4 Summary of the 3-point correlators

We found
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where in the last expression we have introduced the quantity
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and where
⇠+2 ⌘ ⇠R , ⇠�2 ⌘ ⇠L (126)

We assumed no mixed correlators, so that we have four decoupled con-
tributions in (124), namely h�3

I
(q)i, then h�3

S
i, then h�3

T
i from ⇠R, and then

h�3
T
i from ⇠L. Also in this case, we remark that the first contribution can be

in principle q�dependent (which immediately gives the GW frequency that
is measured at the interferometers), while the other quantities are numbers.
Mixed correlators could in general be present.
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Frequency dependence of initial anisotropies
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What about the initial conditions?
What about their frequency dependence?  

for the case of a primordial SGWB visible at  interferometers scales 
this term is present and can lead to anisotropies with large (order-
one) frequency dependence.  

NOTE that, in the case  of CMB anisotropies, the universe is not transparent to photons before recombination 

and this contribution is completely erased by collisions at linear order 

The frequency dependence in CMB arises only at second-order in the perturbations collision. 



When the initial anisotropies                                      have a non-trivial q-dependence?    
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12 Relation between spectral distortions and
GW primordial power spectrum

The goal of this section is to understand under which conditions the initial
term �I (q) has a nontrivial q�dependence, that leads to spectral distortion.
We also want to study this in the context of the sourced GW signal in axion
inflation.

The present fractional energy in GW, ⌦GW (⌘0, q) is related to the pri-
mordial GW, power spectrum P� (⌘in, q) by
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This relation appears as eq. (212) of [8]) and it interpolates between large
and small scales. We are interested in the modes with q � qeq, that entered
the horizon during radiation domination, for which we take only the second
term in the square bracket, and

⌦GW (⌘0, q) = constant⇥
X

�

P� (⌘in, q) (194)

and, as we will see, the constant term is not relevant for our computation.
We are interested in the contribution from the initial condition �in. So we

can set the long modes ⇣
⇣
~k

⌘
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⇣
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⌘
= 0 in this discussion. We therefore

assume that the value of the energy density that arrived to the location ~x

from the direction n̂ is controlled by the parameter

⇠ = ⇠̄ + �⇠ (~x+ d n̂) (195)

In this relation, ⇠ is the value assumed by this parameter during inflation at
the location ~x+d n̂, where d is the distance covered by the gravitons between
the initial and the present time (equal for all directions, since we are assuming
no long scale modes). If the parameter ⇠ is in turn controlled by a field, ⇠̄ is
due to the background value of the field, while �⇠ by its perturbations.

We then generalize the realtion (193) to
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Suppose the GW energy 
density that arrives at x0
from direction n depends on
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as well as in
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This gives
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and the question of whether we have or have not spectral distortion depends
on whether the product
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is or is not q�dependent. We can also exploit the standard definition of the
tensor spectral tilt
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12.1 Relation with CMB

It is instructive to write the analogous of these relations in the CMB case, to
see again in this language why spectral distortions do not arise in that case
(to linear order). In that that case

⇠ ! T (207)
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q-dependence of initial anisotropies 
if q-dependence of    

Observer

Frequency dependence of initial anisotropies

Credit Nicola Bartolo

where

*# =
, ln∑$[1$(3, ̅5)]
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Frequency dependence of initial anisotropies can be a new observable to probe 
the origin of a primordial SGWB

and we define that analogous of the power spectrum by mimicking its relation
with the energy density that is valid for the GW
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Using this relation, we would then have
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which is indeed p�independent (no spectral distortions), and reproduces the
expected result

� (⌘0, ~x, q, n̂) = F
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12.2 Explicit computation for axion inflation

We denote ⇠̄ with ⇠ for brevity. In axion inflation, it is defined as ⇠ ⌘
�̇

2fH .
In the case of axion inflation, the vacuum (2 polarizations) plus the sourced
signal (1 polarization only, since the other is negligible) is formally of the
type
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where H and ⇠ depend on q, in the sense that they should be evaluated
when the mode of comoving momentum q leaves the horizon, namely when
q = aH. The function fL (⇠) is tabulated from the computations done in [9],
and it shown in Figure 3 of that paper.

We want to use this power spectrum in the computation of
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The first derivative is immediate. The derivative wrt q needs to be
“traded” wrt a derivative wrt time. We start from di↵erentiating q = aH:

dq = Hda
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1 +
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da

dH

H

#
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1 +
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#

(213)

39

5

F . We see that indeed this quantity presents a nontriv-
ial scale dependence, and therefore the correlators of the
anisotropies will be di↵erent at di↵erent frequencies.
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FIG. 1: Quantity F as a function of the frequency f = q/2⇡
of the GW signal for the model of axion inflation described in
the text.

Future work. We plan to extend the results presented
here, to analyze several additional physical e↵ects, includ-
ing the e↵ects of neutrinos on the GW amplitude [38],
the possible direct dependence of �I on n̂, tests of non-
standard expansion in the early universe, possible mixed
bispectra among the three contributions to � that we have
discussed, and the feasibility of measuring the frequency
dependence of the 2-point function and the bispectra at
GW interferometers.

Acknowledgments. We thank Maresuke Shiraishi for
useful comments and discussions. N.B., D.B. and S.M.
acknowledge partial financial support by ASI Grant No.
2016-24-H.0. A.R. is supported by the Swiss National
Science Foundation (SNSF), project The Non-Gaussian
Universe and Cosmological Symmetries, project number:
200020-178787. The work of G.T. is partially supported
by STFC grant ST/P00055X/1.

[1] B. P. Abbott et al. [LIGO Scientific and Virgo Collabo-
rations], arXiv:1903.02886 [gr-qc].

[2] A. Renzini and C. Contaldi, arXiv:1907.10329 [gr-qc].
[3] H. Audley et al. [LISA Collaboration], arXiv:1702.00786

[astro-ph.IM].
[4] S. Kawamura et al., Class. Quant. Grav. 23, S125 (2006).
[5] B. Sathyaprakash et al., arXiv:1108.1423 [gr-qc].
[6] B. P. Abbott et al. [LIGO Scientific Collaboration], Class.

Quant. Grav. 34, no. 4, 044001 (2017) [arXiv:1607.08697
[astro-ph.IM]].

[7] M. C. Guzzetti, N. Bartolo, M. Liguori and S. Matarrese,
Riv. Nuovo Cim. 39, no. 9, 399 (2016) [arXiv:1605.01615
[astro-ph.CO]].

[8] N. Bartolo et al., JCAP 1612, no. 12, 026 (2016)
[arXiv:1610.06481 [astro-ph.CO]].

[9] C. Caprini and D. G. Figueroa, Class. Quant. Grav. 35,
no. 16, 163001 (2018) [arXiv:1801.04268 [astro-ph.CO]].

[10] M. Geller, A. Hook, R. Sundrum and Y. Tsai, Phys. Rev.
Lett. 121, no. 20, 201303 (2018) [arXiv:1803.10780 [hep-
ph]].

[11] A. Ricciardone and G. Tasinato, JCAP 1802 (2018)
no.02, 011 [arXiv:1711.02635 [astro-ph.CO]].

[12] E. Dimastrogiovanni, M. Fasiello and G. Tasinato,
arXiv:1906.07204 [astro-ph.CO].

[13] C. Caprini, D. G. Figueroa, R. Flauger, G. Nardini,
M. Peloso, M. Pieroni, A. Ricciardone and G. Tasinato,
arXiv:1906.09244 [astro-ph.CO].

[14] V. Alba and J. Maldacena, JHEP 1603 (2016) 115
[arXiv:1512.01531 [hep-th]].

[15] C. R. Contaldi, Phys. Lett. B 771 (2017) 9
[arXiv:1609.08168 [astro-ph.CO]].

[16] D. Bertacca, A. Raccanelli, N. Bartolo and S. Matarrese,
Phys. Dark Univ. 20 (2018) 32 [arXiv:1702.01750 [gr-qc]].

[17] G. Cusin, C. Pitrou and J. P. Uzan, Phys. Rev. D 96
(2017) no.10, 103019 [arXiv:1704.06184 [astro-ph.CO]].

[18] A. C. Jenkins and M. Sakellariadou, Phys. Rev. D 98
(2018) no.6, 063509 [arXiv:1802.06046 [astro-ph.CO]].

[19] G. Cusin, R. Durrer and P. G. Ferreira, Phys. Rev. D 99
(2019) no.2, 023534 [arXiv:1807.10620 [astro-ph.CO]].

[20] N. Bartolo, S. Matarrese and A. Riotto, JCAP 0701
(2007) 019 [astro-ph/0610110].

[21] N. Bartolo, S. Matarrese and A. Riotto, JCAP 0606, 024
(2006) [astro-ph/0604416].

[22] J. Chluba, R. Khatri and R. A. Sunyaev, Mon. Not. Roy.
Astron. Soc. 425 (2012) 1129 [arXiv:1202.0057 [astro-
ph.CO]].

[23] J. L. Cook and L. Sorbo, Phys. Rev. D 85, 023534
(2012) Erratum: [Phys. Rev. D 86, 069901 (2012)]
[arXiv:1109.0022 [astro-ph.CO]].

[24] J. Garcia-Bellido, M. Peloso and C. Unal, JCAP 1612,
no. 12, 031 (2016) [arXiv:1610.03763 [astro-ph.CO]].

[25] N. Bartolo et al., JCAP 1811, no. 11, 034 (2018)
[arXiv:1806.02819 [astro-ph.CO]].

[26] N. Bartolo, V. De Luca, G. Franciolini, A. Lewis,
M. Peloso and A. Riotto, Phys. Rev. Lett. 122 (2019)
no.21, 211301 [arXiv:1810.12218 [astro-ph.CO]].

[27] N. Bartolo, V. De Luca, G. Franciolini, M. Peloso,
D. Racco and A. Riotto, Phys. Rev. D 99, no. 10, 103521
(2019) [arXiv:1810.12224 [astro-ph.CO]].

[28] N. Bartolo et al, in preparation.
[29] N. Bartolo, A. Hoseinpour, G. Orlando, S. Matarrese

and M. Zarei, Phys. Rev. D 98 (2018) no.2, 023518
[arXiv:1804.06298 [gr-qc]].

[30] S. Dodelson, Amsterdam, Netherlands: Academic Pr.
(2003) 440 p

[31] N. Bartolo, E. Komatsu, S. Matarrese and A. Riotto,
Phys. Rept. 402, 103 (2004) [astro-ph/0406398].

[32] E. Komatsu and D. N. Spergel, Phys. Rev. D 63, 063002
(2001) [astro-ph/0005036].

[33] A. Gangui, F. Lucchin, S. Matarrese and S. Mollerach,
Astrophys. J. 430, 447 (1994) [astro-ph/9312033].

[34] J. M. Maldacena, JHEP 0305 (2003) 013 [astro-
ph/0210603].

[35] N. Bartolo, S. Matarrese and A. Riotto, JCAP 1202
(2012) 017 [arXiv:1109.2043 [astro-ph.CO]].

[36] P. Creminelli, C. Pitrou and F. Vernizzi, JCAP 1111
(2011) 025 [arXiv:1109.1822 [astro-ph.CO]].

[37] A. Lewis, JCAP 1206 (2012) 023 [arXiv:1204.5018 [astro-
ph.CO]].

[38] S. Weinberg, Phys. Rev. D 69, 023503 (2004) [astro-
ph/0306304].

f1
f2

-9 -8 -7 -6 -5 -4

4

5

6

7

8

9

f êMp

V
êM

3
M
p

Figure 3. The solid line shows the inflaton potential (3.7) spanned by the inflation from N = 60 to
N = 5, with parameters leading to the spectra of Figure 4. The two arrows indicate the position of
the two transition regions (the potential is linear both at � < �1 and � > �2, but with a di↵erent
slope). The dotted lines shows an unmodified linear inflaton potential.
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Figure 4. As in Figure 2, but with a larger coupling of the inflaton to the gauge field, and with the
modified inflaton potential (3.7). The solid lines are the spectra obtained in this case (the correspond-
ing potential is shown in the solid line of Figure 3). The dashed lines show how the spectra would
continue at small scales if the instead the inflaton potential remained linear at all values (corresponding
to the dashed line in Figure 3).

In Figure 3 we compare this modified potential (solid line) with the unmodified linear
potential (dashed line). We choose parameters so that the inflaton spans 60 e-folds of inflation
in the range shown in the figure, that we assume to corresponds to an evolution between
N = 60 and N = 0 e-folds before the end of inflation (we note that the potential (3.7) is
unbounded from below; the potential needs to be further modified at greater values than
those shown, so to have a stable minimum with V = 0). The value of �1 is chosen so that the
departure from the initial linear potential occurs at N = 24 (this gives �1 ' �5.22Mp; we
then choose �2 = �4.22Mp). We then choose r = 0.3, so that the derivative of the potential
decreases of a factor of about ⇠ 1/3 from �1 to �2.

We choose the inflaton-gauge field maximum coupling allowed by CMB in the case of a
linear potential, f = Mp/48, see Ref. [1]. This corresponds to ⇠CMB ' 2.41 at N = 60. The
inflaton speed increases in the initial linear potential until � reaches �1. At this moment,
⇠ ' 4.43, which is within the limit of validity of perturbation theory (⇠ <

⇠ 4.8) obtained in
Ref. [68]. The inflaton speed, and the parameter ⇠ decrease at the transition � = �1, due to
the decrease of the slope of the inflation potential. This significantly reduces the gauge field
amplification and the sourced scalar and tensor modes. To quantify the e↵ect of the change
of the potential, in Figures 3 and 4 we also show with dashed lines the unmodified linear
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Astrophysical Stochastic gravitational 
background (ASGWB)

• A gravitational wave stochastic background of astrophysical origin 
may have resulted from the superposition of a large number of 
unresolved sources since the beginning of stellar activity. 

• Its detection would put very strong constrains on the physical 
properties of compact objects, the initial mass function or the star 
formation history. 



• It could potentially be used to probe the Universe at redshifts z ∼ 0.02–10  and 
be used as a tool to study the evolving star formation rate, supernova rates and 
the mass distribution of black-hole births. 

• However, from the point of view of detecting the cosmological background 
produced in the primordial Universe, the astrophysical background is a ‘noise’, 
which could possibly mask the relic cosmological signal. 

• Hence, an understanding of ASGWBs is important on two fronts: 
- first to provide fundamental knowledge of astrophysical source evolution on a 

cosmological scale 
- second to differentiate this background from the early-Universe background. 

Astrophysical Stochastic gravitational 
background (ASGWB)



The above relationship can also be written in terms of the comoving rate density 8 (

• the energy spectrum of an individual source dEgw/dfs is measured in its rest frame. 

• E(z) is a cosmological factor 
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ASGWB: energy density of the background 



The above relationship can also be written in terms of the comoving rate density 8 (

• the energy spectrum of an individual source dEgw/dfs is measured in its rest frame. 

• E(z) is a cosmological factor 

• Progenitors are most likely of a stellar origin it is expected that: 
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The above relationship can also be written in terms of the comoving rate density 8 (

• the energy spectrum of an individual source dEgw/dfs is measured in its rest frame. 

• E(z) is a cosmological factor 
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where SFR ( is the star formation rate at redshift ( (per unit comoving volume and comoving time), ? ( is the age of 
the universe at redshift (, and f(τ)dτ is the fraction of progenitors that are born with a lifetimes between τ and τ + dτ . 

• The limits of the integral over ( depend on both the emission frequency range in the source frame, and the redshift 
interval, where the source can be located 

• Signals may have very different statistical behaviour which depends on the ratio between the duration of the events
and the time interval between successive events, the duty cycle:

Δ = ∫#
) ̅B 1 + - Dd-′
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ASGWB: energy density of the background 



Stochastic backgrounds can also differ from one another in temporal 
distribution and amplitude. 

Δ = :
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Stochastic backgrounds can also differ from one another in temporal 
distribution and amplitude. 

Shot noise G < I : the number of sources is small enough 
for the time interval between events to be long compared 
to the duration of a single event. 

The waveforms are separated by long stretches of silence 
and the closest sources may are resolved and can be 
detected by data analysis techniques in the time domain 
(or the time frequency domain) such as match filtering 
(Arnaud et al. 1999; Pradier et al. 2001). 

The optimal method is matched filtering but this filter can 
only be optimal if the exact shape of the signal is known. 

Δ = :
(

%

̅D 1 + ( 8d(′The duty cycle:

Regimbau 2011



Stochastic backgrounds can also differ from one another in temporal 
distribution and amplitude. 

Δ = :
(

%

̅D 1 + ( 8d(′The duty cycle:

• Popcorn noise G~I : the time interval between 
events is of the same order of the duration of a single 
event. These signals, which sound like crackling 
popcorn. 

• The waveforms may overlap but the statistic is not 
Gaussian and the amplitude on the detector at a 
given time is unpredictable. 

• The amplitude distribution of this background signal 
will contain information on the spatial distribution of 
the sources. 

Regimbau 2011



Stochastic backgrounds can also differ from one another in temporal 
distribution and amplitude. 

Δ = :
(

%

̅D 1 + ( 8d(′The duty cycle:

• Continuous G ≫ I: the number of sources is large 
enough for the time interval between events to be small 
compared to the duration of a single event. 

• The waveforms overlap to create a continuous 
background and due to the central limit theorem, such 
backgrounds obey the Gaussian statistic. 

• They are completely determined by their spectral 
properties and could be detected by data analysis 
methods in the frequency domain such as the standard 
cross correlation statistic (Allen & Romano 1999).

Regimbau 2011



• Events located beyond the critical 
redshift z∗ = 0.23 produced a 
continuous background;

• in the redshift interval 0.027 < z < 0.23 
produce a nearly continuous (popcorn 
noise) signal;

• The signal is discrete, i.e. shot noise 
like, for events occurring closer than z 
= 0.027. 

Ωgw ,for the continuous component, has a maximum at 670 Hz with an amplitude of 1.1 × 10−9, while the 

popcorn noise component has an amplitude about one order of magnitude higher with maximum at 1.2 kHz. 

That study highlights the importance of the popcorn noise regime to the ASGWB (Coward & Regimbau 2006). 

Δ =

Δ =

Δ =

Coward & Regimbau 2006

fo

Nature of the background.



Compact white-dwarf 
binaries in the Milky Way 

• Combined GW signal produced by compact 
white-dwarf binaries in the Milky Way, producing 
a “confusion-limited” GWB in the frequency band 
∼ 10−4 Hz to 10−1 Hz [Bender and Hils (1997)]. 

• This is a guaranteed signal for the proposed 
space-based interferometer LISA 

• The confusion-limited white-dwarf binary signal 
is expected to be so strong that it will dominate 
the instrumental noise at low frequencies, forming 
a GW “foreground” that will have to be contended 
with when searching for other gravitational 
sources in the LISA band [e.g. see Adams et al. 
(2014)]

Credit: Jenkins

10–100 Mpc
(z ≈ 0.002–0.02)



Compact white-dwarf 
binaries in the Milky Way 

• Combined GW signal produced by compact 
white-dwarf binaries in the Milky Way, producing 
a “confusion-limited” GWB in the frequency band 
∼ 10−4 Hz to 10−1 Hz [Bender and Hils (1997)]. 

• This is a guaranteed signal for the proposed 
space-based interferometer LISA 

• The confusion-limited white-dwarf binary signal 
is expected to be so strong that it will dominate 
the instrumental noise at low frequencies, forming 
a GW “foreground” that will have to be contended 
with when searching for other gravitational 
sources in the LISA band [e.g. see Adams et al. 
(2014)]

Regimbau 2011

Gravitational strain in Hz−1/2 , corresponding to optimistic 
(grey continuous curve) and pessimistic (grey dashed 
curve) compact object captures (Barack & Cutler 2004), 
along with the LISA instrumental noise (black) and the WD-
WD foreground (black). 



SGWB anisotropies:
Statistically isotropic backgrounds are to be contrasted with statistically anisotropic backgrounds, whose 
distribution of power on the sky has preferred directions, even when averaged over different realizations of 
the sources that produce it. For example, the “confusion-limited” foreground that LISA will see from the 
population of close white-dwarf binaries in the Milky Way will have its GW power concentrated in the 
direction of the Milky Way. 

Figure shows simulated sky-maps for a statistically isotropic background (left panel) and a statistically 
anisotropic background (right panel). The anisotropic background in that figure follows the galactic plane in 
equatorial coordinates. 

J. Romano 2019



• Angular power spectrum by [Cusin et al. (2017, 2018a,b)] considering the presence of 
inhomogeneities in the matter distribution and working with a coarse graining approach which 
allow to probe GW sources on cosmological, galactic and sub-galactic scales. 

• Other predictions for the GW angular power spectrum have been derived in [Jenkins et a.  
(2018a,b)] where both analytical expression and numerical study, using galaxy catalogue from the 
Millennium simulation, are presented. 

• Very recently, [Cusin et al. (2019a,b)] analyses the astrophysical dependence of the angular power 
spectrum for different stellar models.

ASGWB anisotropies:

Cl ∝ 1/l on large scales

- relative fluctuations
of the signal are of 
order 30% at 100 Hz. 

Cusin, Dvorkin, Pitrou, Uzan 2017,2018 ,2019



• Angular power spectrum by [Cusin et al. (2017, 2018a,b)] considering the presence of 
inhomogeneities in the matter distribution and working with a coarse graining approach which 
allow to probe GW sources on cosmological, galactic and sub-galactic scales. 

• Other predictions for the GW angular power spectrum have been derived in [Jenkins et a.  
(2018a,b)] where both analytical expression and numerical study, using galaxy catalogue from the 
Millennium simulation, are presented. 

• Very recently, [Cusin et al. (2019a,b)] analyses the astrophysical dependence of the angular power 
spectrum for different stellar models.

ASGWB anisotropies:

• In [Jenkins  et al. (2019a,b)] ] they pointed out 

that ASGWB is obscured by shot noise, caused 

by the finite number of GW sources at non-

linear scales (precisely for scales less than 

100Mpc, i.e. z<0.023). They developed a new 

method for estimating the angular spectrum of 

anisotropies, based on the principle of 

combining statistically-independent data 

segments. 



AGWB in a general covariant setting
The total gravitational energy density in a direction n is the sum of the all unresolved astrophysical 
contributions along the line of sight contained in a given volume dVe(n) [see also Cusin et al. 2017]

where  

- nh[i] is the (physical) GW number density in a halo located at "$%, 

- [i] is the index of summation over all unresolved astrophysical sources that produce the background of GWs 

- $⃗ = &&, &∗, (, $⃗∗ , where && is the halo mass, &∗ the masses of the stars that give origin of the sources, ( are the 
masses of the compact objects and $⃗∗ includes the astrophysical parameters related to the model (i.e. spin, orbital 
parameters, star formation rate). 

- The letter “e” stands for “evaluated at the emission (source) position” while “o” for “evaluated at the observers position”. 

- The physical volume dVe(n) at emission is defined as

- *% is the four velocity vector as a function of comoving location 

- +( , the angular diameter distance 

- -)*% GW four-momentum 

Bertacca et al 2019



AGWB in a general covariant setting 
The total gravitational energy density in a direction n is the sum of the all unresolved astrophysical 
contributions along the line of sight contained in a given volume dVe(n) [see also Cusin et al. 2017]

We find

where we define  

- Here we consider the local wave zone approximation to define the tetrads at source position (i.e. 
the observer “at the emitted position” is a region with a comoving distance to the source 
sufficiently large so that the gravitational field is “weak enough” but still “local”, i.e. its 
wavelength is small w.r.t. the comoving distance from the observer 

- Using 

The total GW density 

Bertacca et al 2019



Energy of gravitational waves

• Energy at emission has a specific distribution function characterised by local parameters of the 
source which depends on the mass, environment, distribution of matter, velocity dispersion of 
the matter and source, and the type of galaxies within the host halo. 

• We can thus distinguish two cases: 

(I) events with short emission (burst sources), e.g. merging binary sources (BH-BH, NS-NS and/or 
NS-BH) and SNe explosions; 

(II) events with inspiral binary sources which have not merged during a Hubble time, and hence 
GW emission is averaged over several periods of the slow evolution of the orbitals parameters 
(continuous sources). The resulting energy in the two cases reads 

[see also Cusin et al. 2017]

Bertacca et al 2019



ASGWB anisotropies in the observed frame
Using the COSMIC LABORATORY (cosmic rulers) 

Bertacca et al 2019



ASGWB anisotropies in the observed frame
Using the COSMIC LABORATORY (cosmic rulers) 

Bertacca et al 2019

When the integration along the line of sight is performed, one should also consider the normalized selection 
window L ( function, whose form depends, besides redshift, on the sensitivity/characteristics of the detector 
(e.g. interferometers in the case of GW). Then we have 



contains all the astrophysical dependencies (mass and 
spin distribution of the binary, emitted GW energy 
spectrum, clustering properties of GW events and 
details of the GW detectors) 

Bias of the i-th type of GW source 

Evolution bias of the i-th type of GW source 

pivot scale. The two transfer functions, �AGWB

` (k) and �LSS

` (k), contain astro-
physical and cosmological information. On the cosmological side they contain
contributions coming from density, velocity, gravity and observer terms and can
be parametrized as
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The astrophysical information can be included focusing on the anisotropies of
the AGWB energy density. The total GW energy density per logarithmic fre-
quency fo and solid angle ⌦o along the line-of-sight n of a SGWB, defined in
e.g., refs. [?, 136, 139]
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contains both a background (monopole) contribution in the observed frame,
which is homogeneous and isotropic, i.e. ⌦̄GW(fo), and a direction-dependent
contribution ⌦GW(fo,n). Starting from these, we can define the total relative
fluctuation as �TOT

AGWB
(fo, n̂) :=
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. The contribu-

tions which enter in the AGWB energy density fluctuation have been computed
in [?, 136, 137, 138, ?, ?, ?, ?, ?, ?, ?, ?, 139, ?, ?]. Here, following [139], we
report its expression in the Poisson gauge
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where the density, velocity, gravity and observer terms, in the first, second, third
and fourth line, respectively contain all the cosmological information. On the
other hand, the function F [i](fo, z, ✓) contains all the astrophysical dependen-
cies: e.g., the mass and spin distribution of the binary, the emitted GW energy
spectrum, the clustering properties of GW events and the details of the GW

detectors. b
[i](z, ✓) and b

[i]
evo(z, ✓) := �d log

⇥
(1 + z)F [i]

⇤
/d log(1 + z) are the

bias and the evolution bias of the i-th type of GW source, which specify the
clustering properties of GW sources and characterise the formation of sources.
Cross-correlation analysis of the AGWB (from sources at all redshifts along
the line of sight) with galaxy number counts at a given redshift has been per-
formed in [138, 140, ?, ?, ?]. This allowed to get a tomographic reconstruc-
tion of the redshift distribution of sources, and can be also useful for the shot
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Where the AGWB energy density fluctuation is 

density contribution

velocity contribution

gravity contribution
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ASGWB anisotropies in the observed frame

Bertacca et al 2019

NB: normalized selection window 
L ( function depends on 
redshift, sensitivity/characteristics 
of the detector/detectors 



ANGULAR POWER SPECTRUM 
Rewriting the background energy density in the following way

the GW energy-density overdensity

where 

is the weight of the relative contribution of the sources which is bounded to be  

Here ΔMN
[O] is the GW energy-density contrast for each contribution. Note that, 

using this  definition, it is possible to describe quickly both the ASGW and 
Cosmological SWG, and compute the angular power spectrum of the GW energy 
density contrast.

Bertacca et al 2019



ANGULAR POWER SPECTRUM  of the GW energy density contrast

where

with

and

Here we have defined a weight function

• is a generalised transfer function which relates the linear primordial potential with a generic 

perturbation term (labeled with b);

• is a generic operator that depends on χ ,η , ∂/∂χ and ∂/∂η Bertacca et al 2019



SGWB generated by black holes mergers in the 
frequency range of LIGO-Virgo. 
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- Given that only unresolved sources contribute to the SGWB, the merger rate of black holes binaries has to be corrected with the 
detector efficiency. 

- We consider the GWs emission in the fo = 50 Hz and fo = 200 Hz channels, assuming that all black holes binaries have members with 
masses (MBH1, MBH2) = (15 M⊙, 15 M⊙) and zero spin. 

- On the cosmological side, we compute the halo bias using the fitting formula calibrated on numerical simulations provided in [Tinker  et al 
2010]. The evolution bias is computed using the halo number density distribution of [Tinker  et al 2008], also calibrated on numerical 
simulations. 

- For simplicity, in the following we assume that all the events come from halos with mass Mh = 1012 M⊙. 

Bertacca et al. 2019
Bellomo et al. +DB in prep.



Thank  You !


