ACCIDENTAL DARK MATTER

Roberto Contino Scuola Normale Superiore, Pisa INFN, Pisa

Theory Colloquium - University of Torino and INFN, 11 December 2020

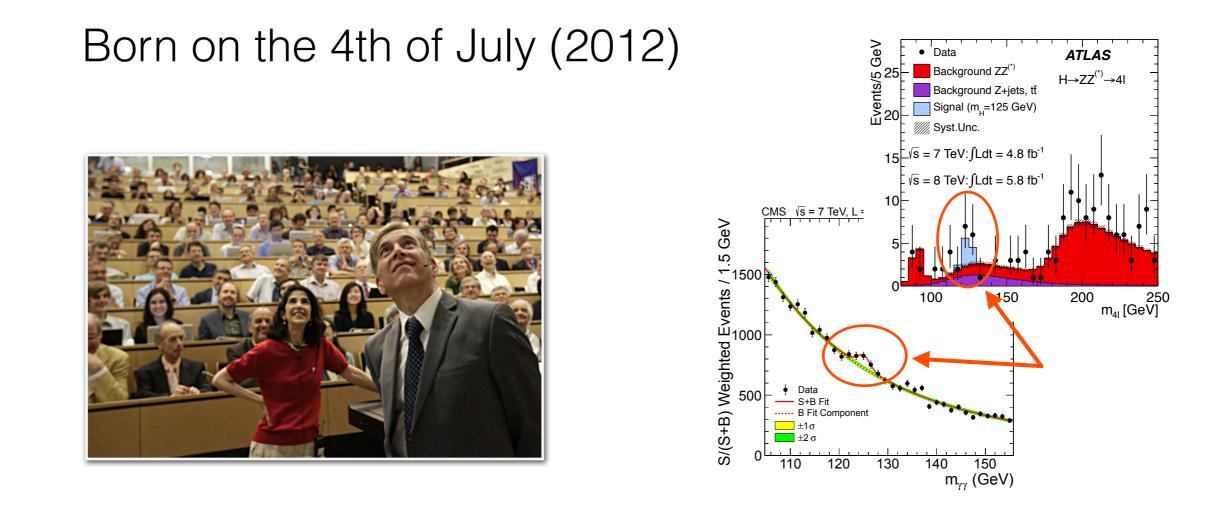
Plan of the talk

Part I: Accidental (Emerging) Symmetries of the SM

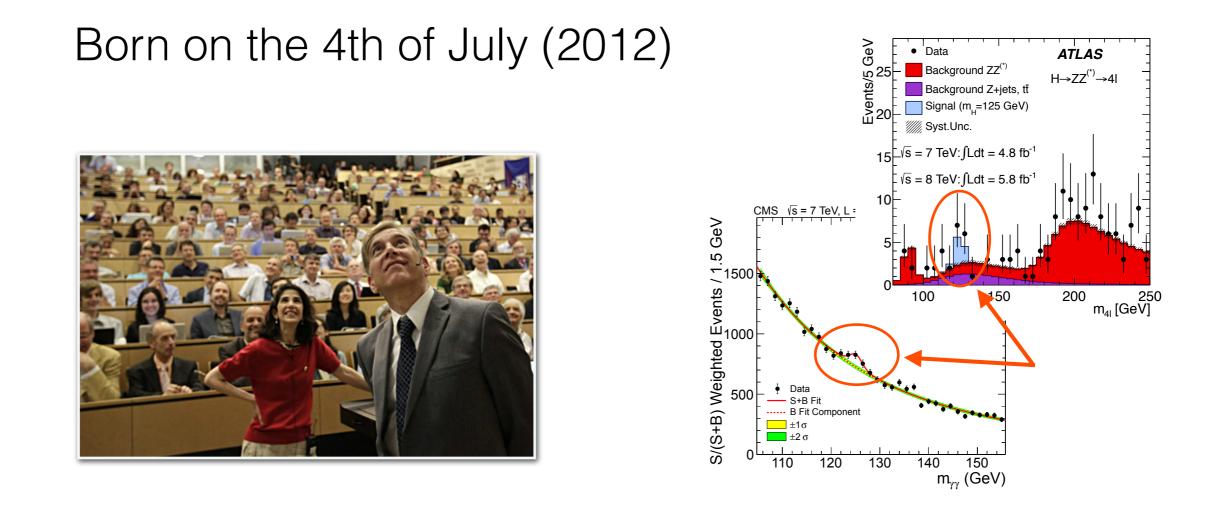
Part II: Accidental Dark Matter

Part I

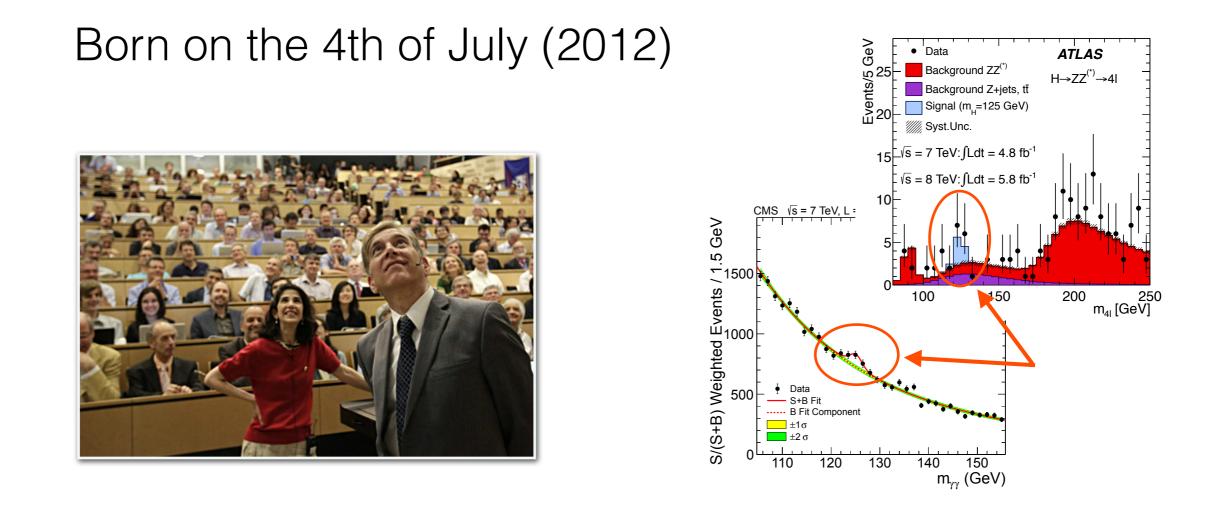
Accidental (Emerging) Symmetries of the SM



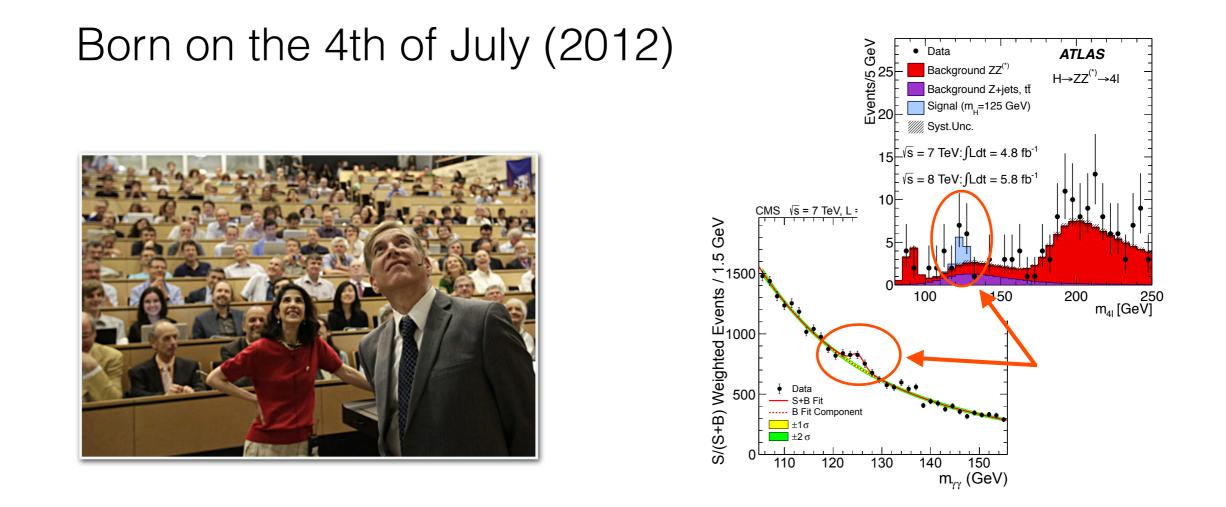
$$m_W^2 W^+_{\mu} W^{\mu-} + \frac{1}{2} Z_{\mu} Z^{\mu} \longrightarrow \frac{v^2}{4} \operatorname{Tr} \left[D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right] \qquad \Sigma = \exp\left(\frac{i\chi^a \sigma^a}{v}\right)$$



$$m_W^2 W^+_{\mu} W^{\mu-} + \frac{1}{2} Z_{\mu} Z^{\mu} \longrightarrow \frac{v^2}{4} \operatorname{Tr} \left[D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right] \left(1 + \frac{h}{v} \right)^2 + \frac{1}{2} (\partial_{\mu} h)^2 - V(h) \qquad \Sigma = \exp\left(\frac{i\chi^a \sigma^a}{v}\right)^2 + \frac{1}{2} (\partial_{\mu} h)^2 - V(h) \qquad \Sigma = \exp\left(\frac{i\chi^a \sigma^a}{v}\right)^2 + \frac{1}{2} (\partial_{\mu} h)^2 - V(h) \qquad \Sigma = \exp\left(\frac{i\chi^a \sigma^a}{v}\right)^2 + \frac{1}{2} (\partial_{\mu} h)^2 - V(h) \qquad \Sigma = \exp\left(\frac{i\chi^a \sigma^a}{v}\right)^2 + \frac{1}{2} (\partial_{\mu} h)^2 - V(h) \qquad \Sigma = \exp\left(\frac{i\chi^a \sigma^a}{v}\right)^2 + \frac{1}{2} (\partial_{\mu} h)^2 - V(h) \qquad \Sigma = \exp\left(\frac{i\chi^a \sigma^a}{v}\right)^2 + \frac{1}{2} (\partial_{\mu} h)^2 - V(h) \qquad \Sigma = \exp\left(\frac{i\chi^a \sigma^a}{v}\right)^2 + \frac{1}{2} (\partial_{\mu} h)^2 - V(h) \qquad \Sigma = \exp\left(\frac{i\chi^a \sigma^a}{v}\right)^2 + \frac{1}{2} (\partial_{\mu} h)^2 + \frac{1}{$$

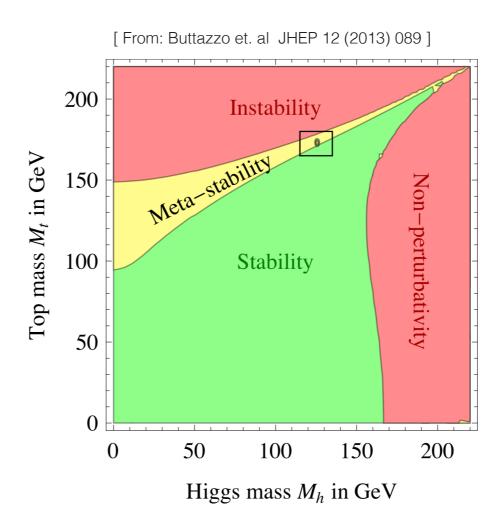


$$m_W^2 W_\mu^+ W^{\mu-} + \frac{1}{2} Z_\mu Z^\mu \longrightarrow \frac{v^2}{4} \operatorname{Tr} \left[D_\mu \Sigma^\dagger D^\mu \Sigma \right] \left(1 + \frac{h}{v} \right)^2 + \frac{1}{2} (\partial_\mu h)^2 - V(h) \qquad \Sigma = \exp\left(\frac{i\chi^a \sigma^a}{v}\right)$$
$$= D_\mu H^\dagger D^\mu H - V(H)$$



$$m_W^2 W_\mu^+ W^{\mu-} + \frac{1}{2} Z_\mu Z^\mu \longrightarrow \frac{v^2}{4} \operatorname{Tr} \left[D_\mu \Sigma^\dagger D^\mu \Sigma \right] \left(1 + \frac{h}{v} \right)^2 + \frac{1}{2} (\partial_\mu h)^2 - V(h) \qquad \Sigma = \exp\left(\frac{i\chi^a \sigma^a}{v}\right)$$
$$= D_\mu H^\dagger D^\mu H - V(H)$$

$$\frac{d\lambda_4}{d\log E} = \frac{\beta_\lambda}{16\pi^2}\lambda_4^2 + \frac{\beta_t}{16\pi^2}y_t^4 = \beta(\lambda_4, y_t)$$

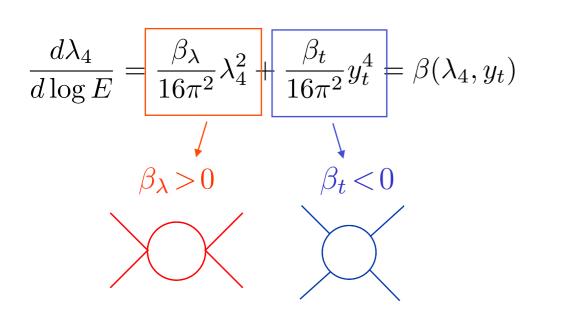


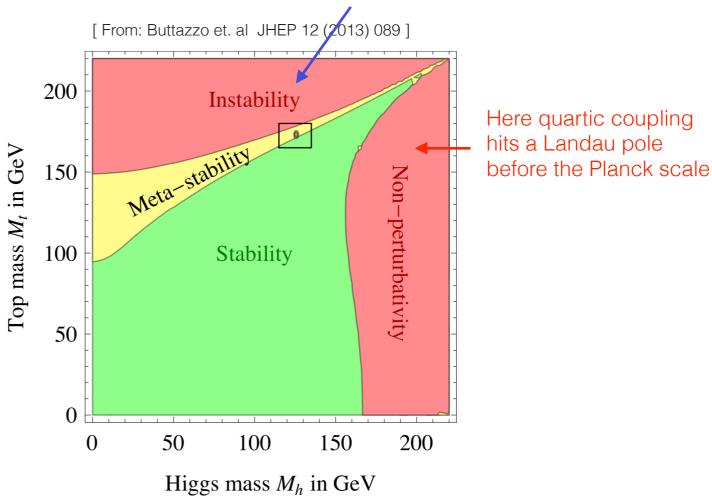
Here new physics needed to make our vacuum stable

$$\frac{d\lambda_4}{d\log E} = \frac{\beta_\lambda}{16\pi^2} \lambda_4^2 + \underbrace{\frac{\beta_t}{16\pi^2} y_t^4}_{\beta_t < 0} = \beta(\lambda_4, y_t)$$

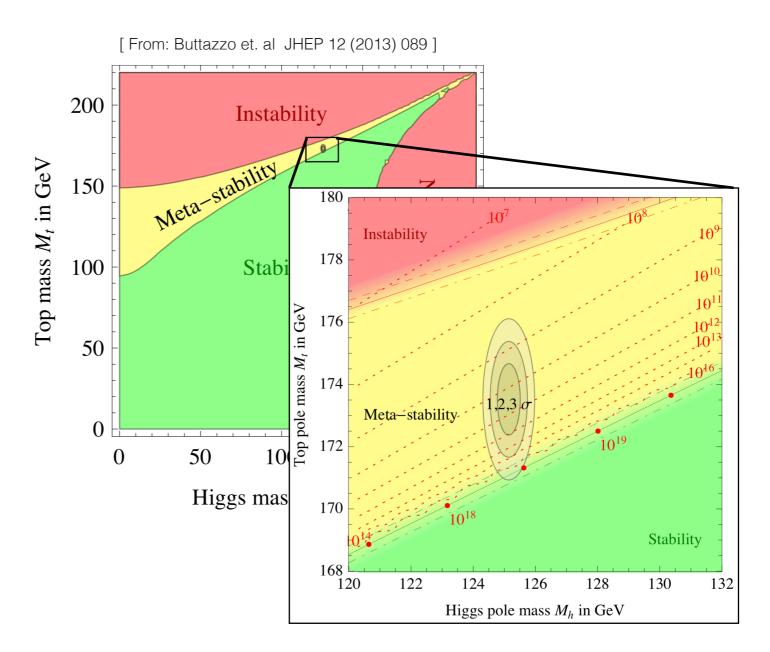


Here new physics needed to make our vacuum stable

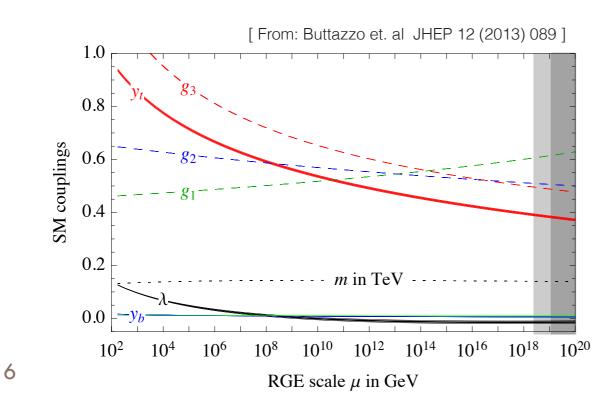


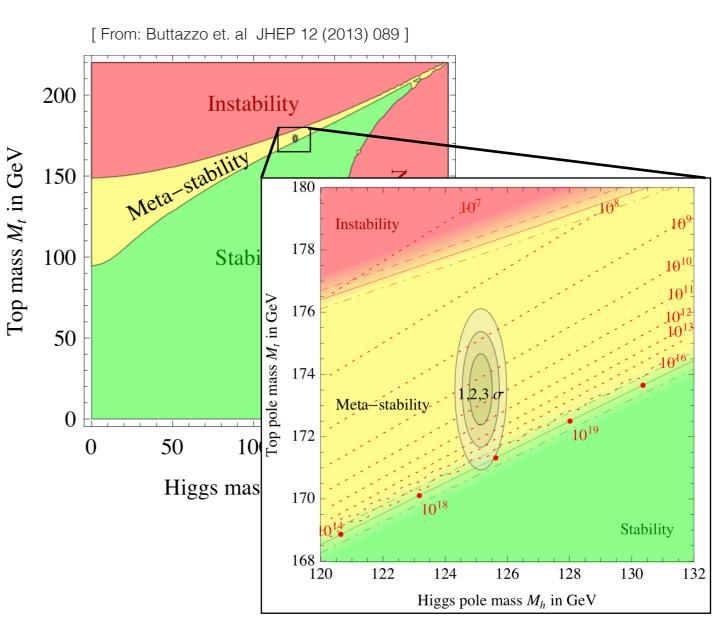


$$\frac{d\lambda_4}{d\log E} = \underbrace{\frac{\beta_\lambda}{16\pi^2} \lambda_4^2}_{\beta_t = \beta_t} \underbrace{\frac{\beta_t}{16\pi^2} y_t^4}_{\beta_t = \beta_t} = \beta(\lambda_4, y_t)$$



Can the theory be extrapolated at arbitrarily large energies ?





Both hypercharge and quartic coupling have Landau poles (*much*) above the Planck scale

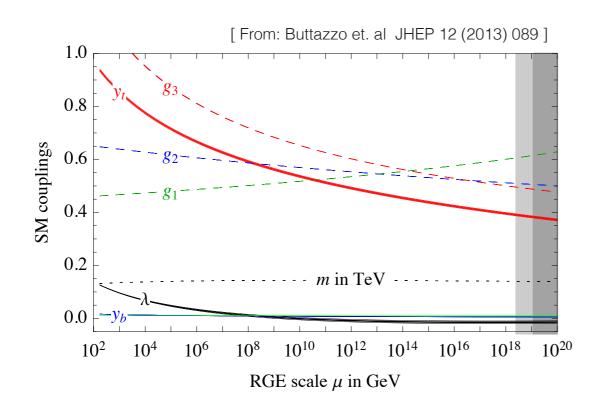
$$\frac{d\lambda_4}{d\log E} = \frac{\beta_\lambda}{16\pi^2} \lambda_4^2 + \frac{\beta_t}{16\pi^2} y_t^4 = \beta(\lambda_4, y_t)$$

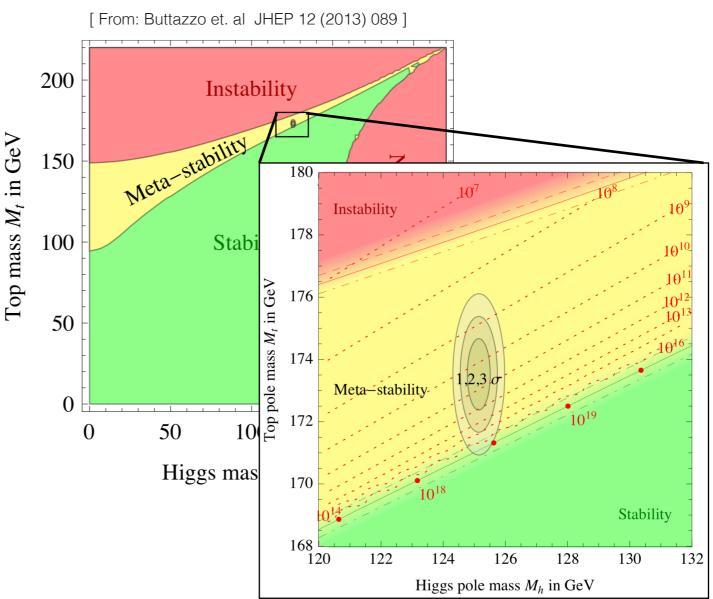
$$\beta_\lambda > 0 \qquad \beta_t < 0$$

$$\beta_t < 0$$

Can the theory be extrapolated at arbitrarily large energies ?

6

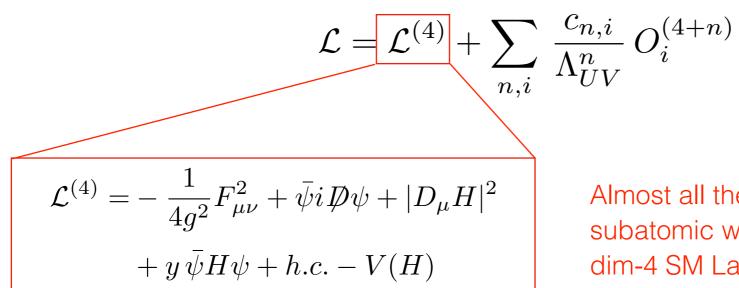




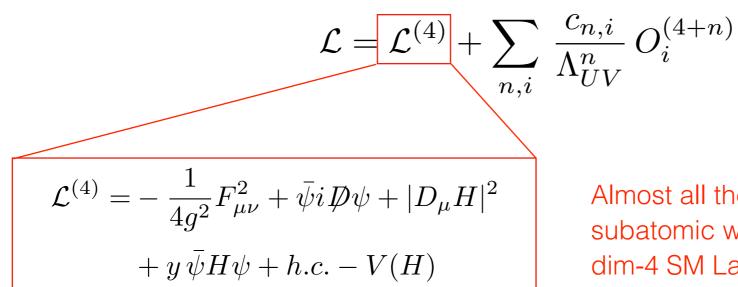
Both hypercharge and quartic coupling have Landau poles (*much*) above the Planck scale

The SM is an effective theory, not a Theory Of Everything

$$\mathcal{L} = \mathcal{L}^{(4)} + \sum_{n,i} \frac{c_{n,i}}{\Lambda_{UV}^n} O_i^{(4+n)}$$

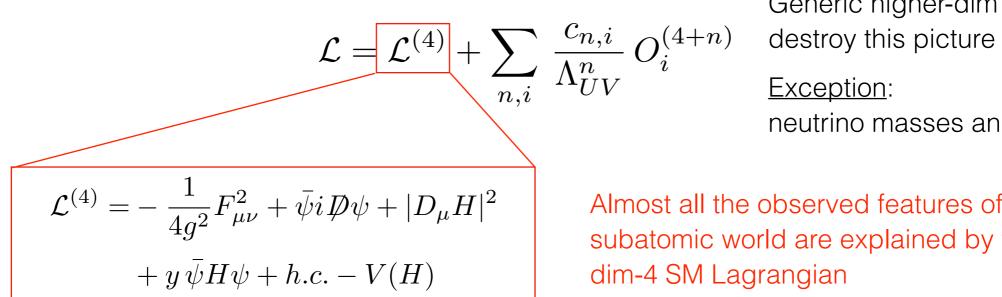


Almost all the observed features of the subatomic world are explained by the dim-4 SM Lagrangian



Almost all the observed features of the subatomic world are explained by the dim-4 SM Lagrangian

- Pattern of Flavor and CP violation (suppressed FCNC, suppressed CP, etc.)
- Approximate Custodial Symmetry $\frac{m_W}{m_Z \cos \theta_W} \simeq 1$ $g_{hWW} = g_{hZZ}$
- No violation of B and L , Proton Stability
- Reference of $\mathcal{L}^{(4)}$ Observed selection rules follow from (approximate) symmetries of $\mathcal{L}^{(4)}$

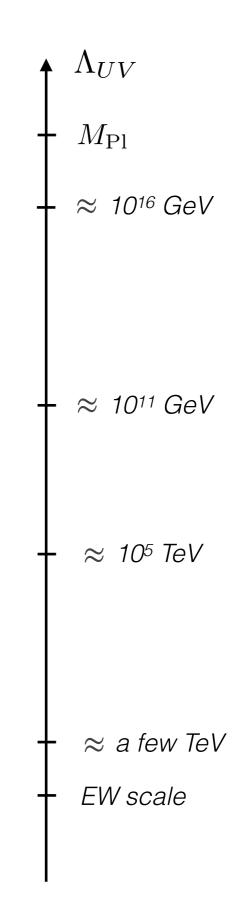


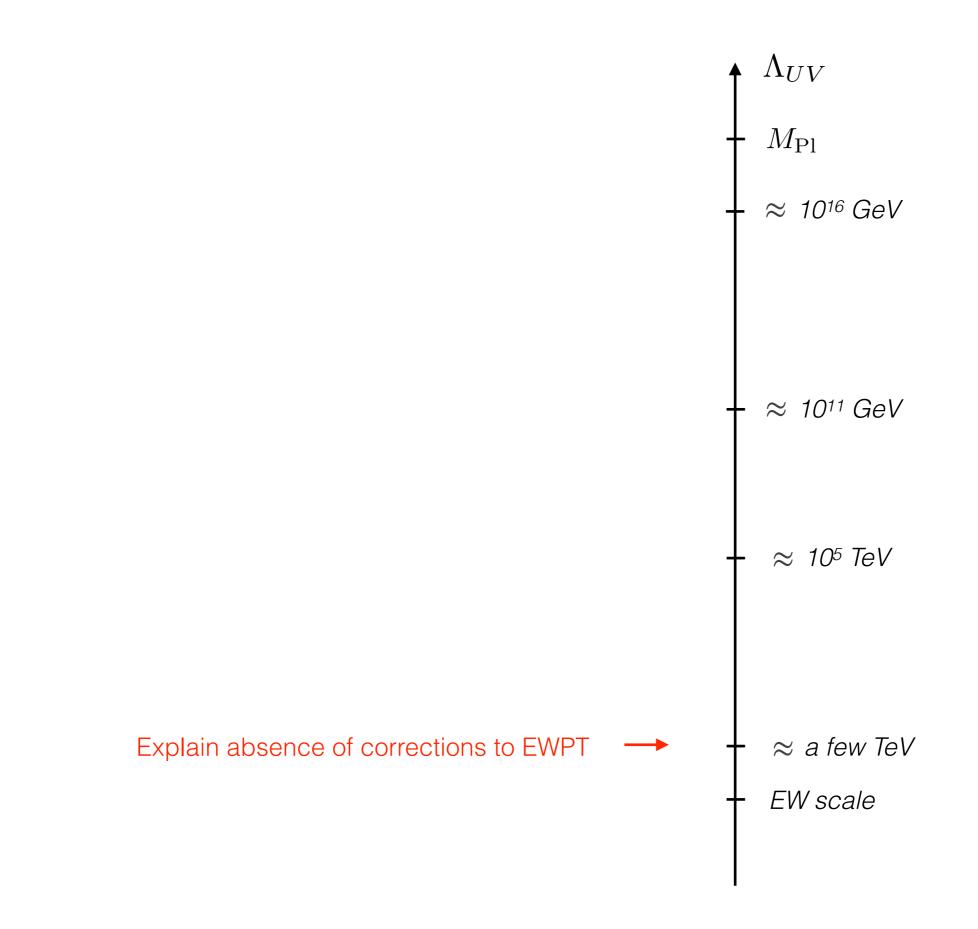
Generic higher-dim operators

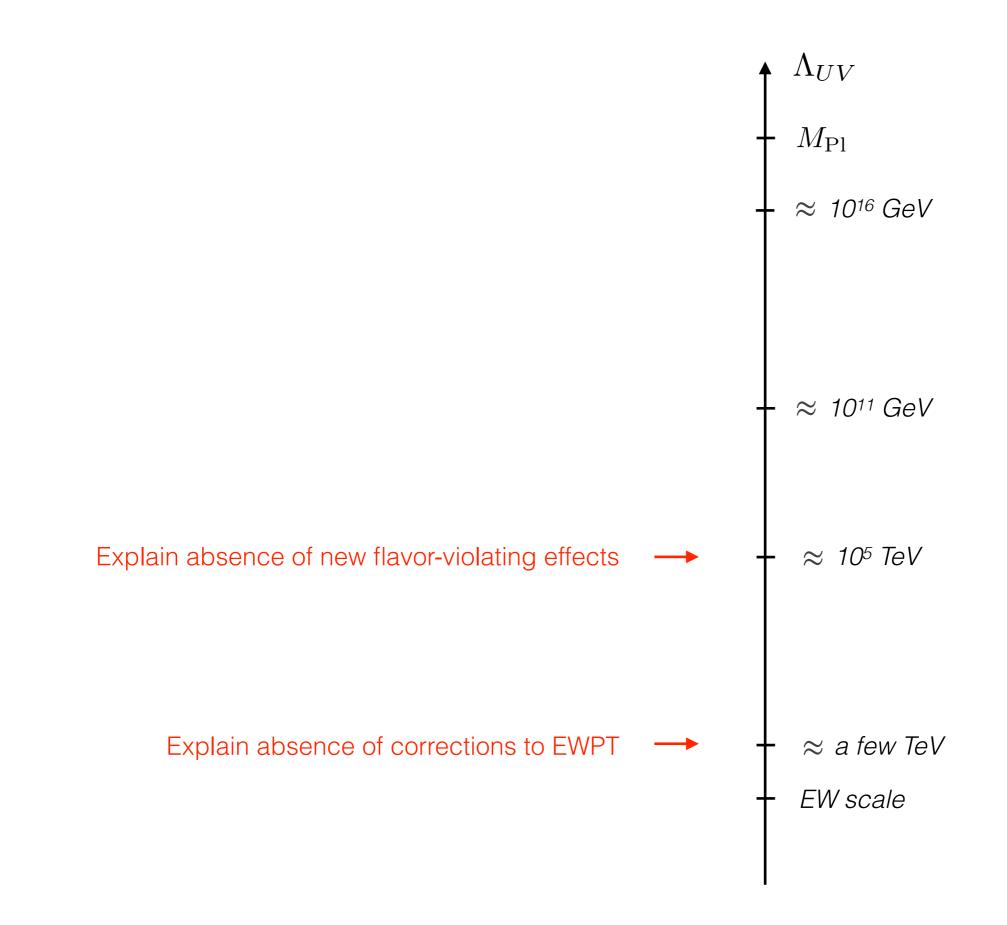
neutrino masses and oscillations

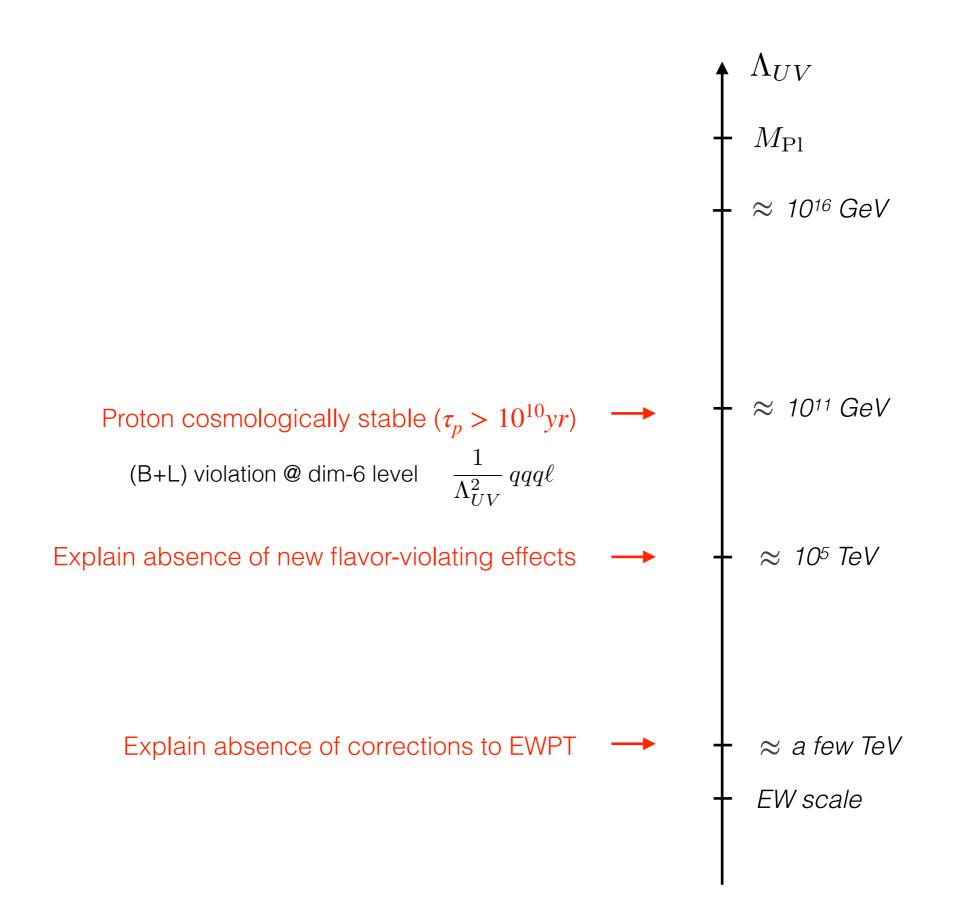
Almost all the observed features of the subatomic world are explained by the dim-4 SM Lagrangian

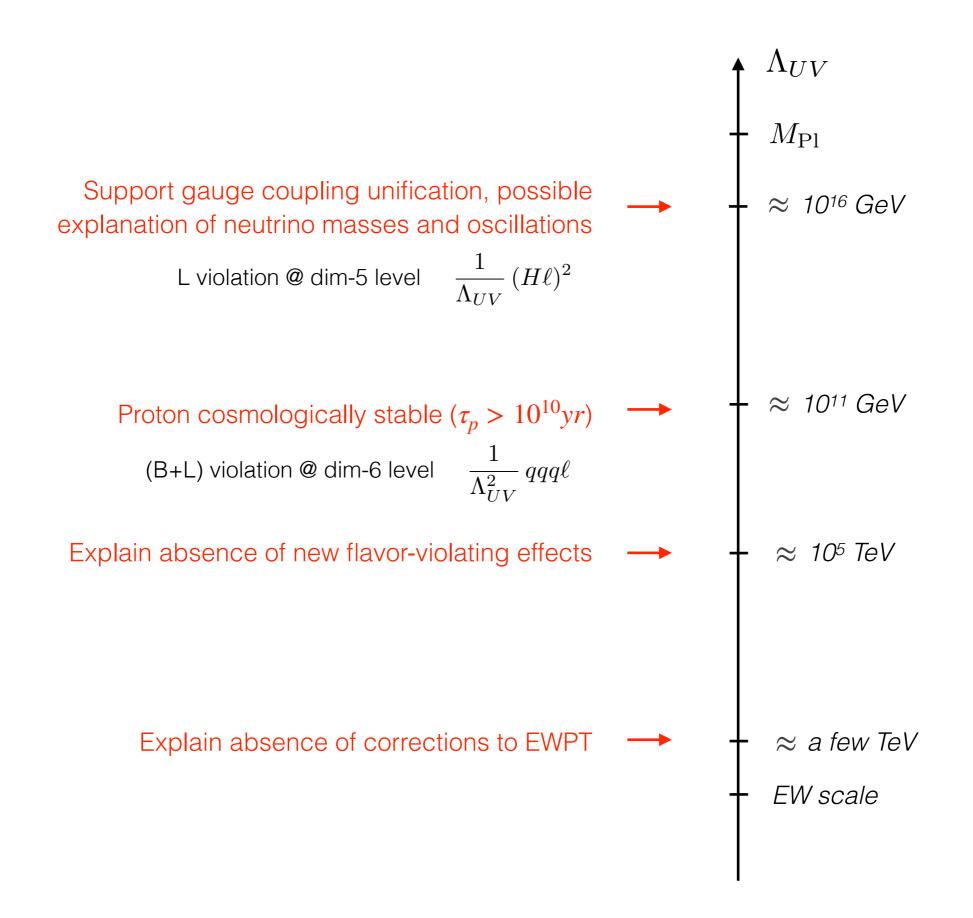
- Pattern of Flavor and CP violation (suppressed FCNC, suppressed CP, etc.)
- $\frac{m_W}{m_Z \cos \theta_W} \simeq 1 \qquad g_{hWW} = g_{hZZ}$ Approximate Custodial Symmetry
- No violation of B and L, Proton Stability
- Observed selection rules follow from (approximate) symmetries of $\mathcal{L}^{(4)}$ R B





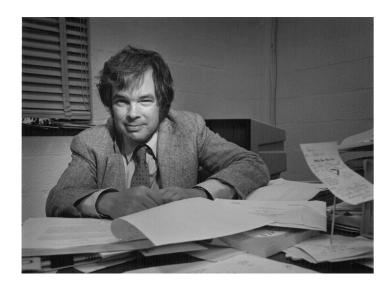






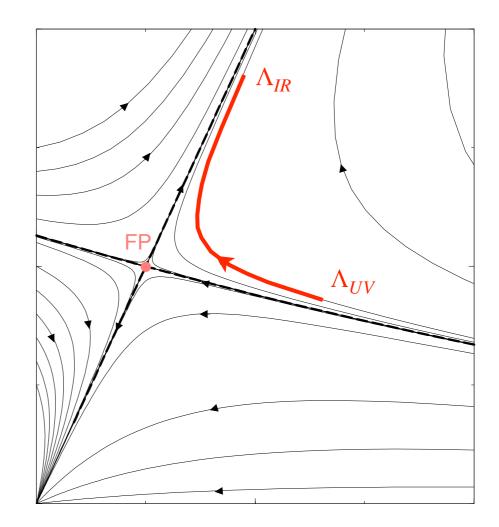
• To have accidental symmetries one needs a large hierarchy, not necessarily a weakly-coupled theory

Wilson's viewpoint:



Large hierarchy =

RG flow close to a Fixed Point, during which the theory is nearly self-similar (i.e. conformal)

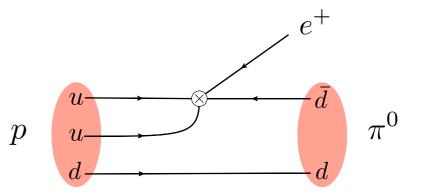


• There exist several well know examples of strongly-coupled Fixed Points with enhanced symmetry in condensed matter systems

Proton Decay

In the SM the proton is *accidentally stable*, it can decay only through *B*-violating dim-6 operators

$$O = \frac{\kappa}{\Lambda_{UV}^2} (uude) \quad \longrightarrow \quad \tau_P = \frac{1}{\Gamma_P} \sim \left(\frac{\kappa^2}{8\pi} \frac{m_P^5}{\Lambda_{UV}^4}\right)^{-1}$$

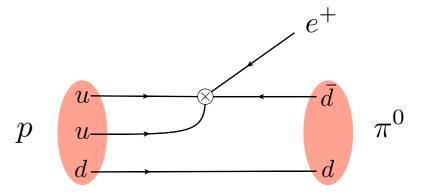


Cosmological stability:	$\tau_P \gtrsim 10^{10} \mathrm{yr}$ \Box	$\Lambda_{UV}\gtrsim 10^{10}{ m GeV}$
Bound from Super-Kamiokande (50k tons):	$\tau_P > 1.67 \times 10^{34} \mathrm{yr}$	$\Lambda_{UV}\gtrsim 10^{16}{ m GeV}$

Proton Decay

In the SM the proton is *accidentally stable*, it can decay only through *B*-violating dim-6 operators

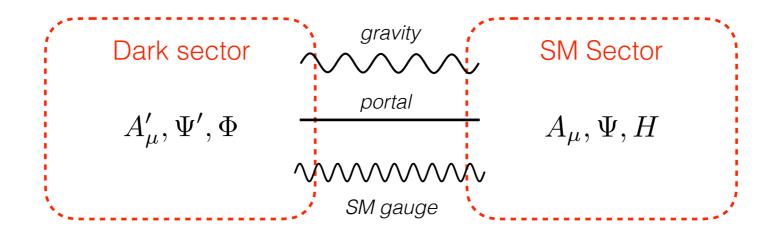
$$O = \frac{\kappa}{\Lambda_{UV}^2} (uude) \quad \longrightarrow \quad \tau_P = \frac{1}{\Gamma_P} \sim \left(\frac{\kappa^2}{8\pi} \frac{m_P^5}{\Lambda_{UV}^4}\right)^{-1}$$



Cosmological stability:	$\tau_P \gtrsim 10^{10} \mathrm{yr}$ \Box	$\Lambda_{UV} \gtrsim 10^{10} \mathrm{GeV}$
Bound from Super-Kamiokande (50k tons):	$\tau_P > 1.67 \times 10^{34} \mathrm{yr}$	$\Lambda_{UV}\gtrsim 10^{16}{ m GeV}$

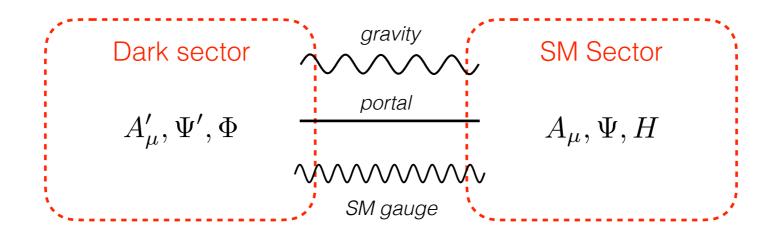
Can Dark Matter be also stable due to some accidental symmetry?

Accidental Dark Matter



Postulate a new sector with new matter and/or new dynamics

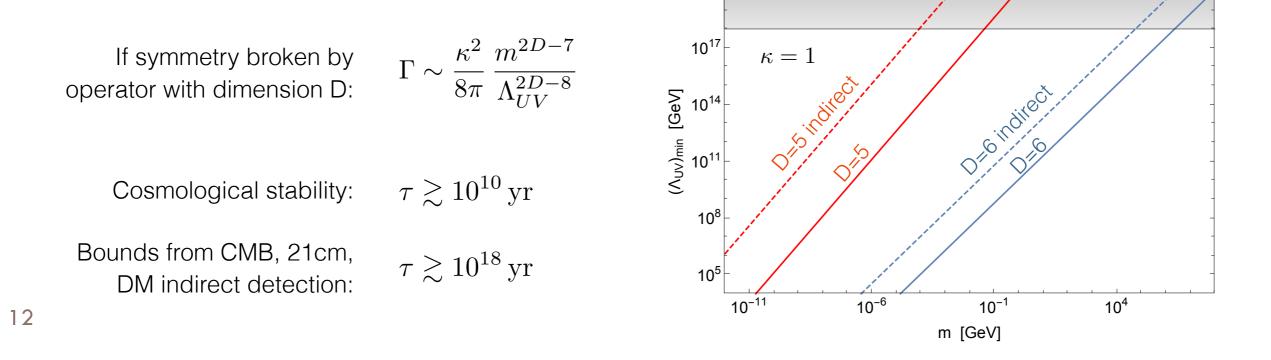
Dark Sector must contain (at least) one DM candidate that is cosmologically stable due to one of its accidental symmetries

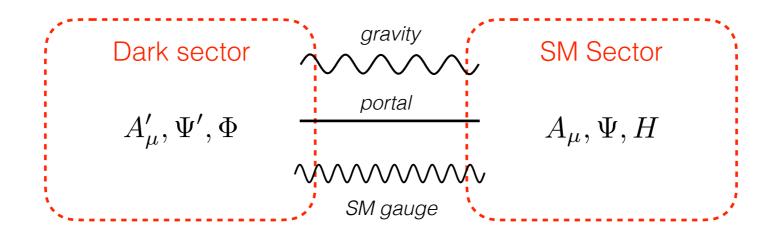


Postulate a new sector with new matter and/or new dynamics

Dark Sector must contain (at least) one DM candidate that is cosmologically stable due to one of its accidental symmetries

10²⁰

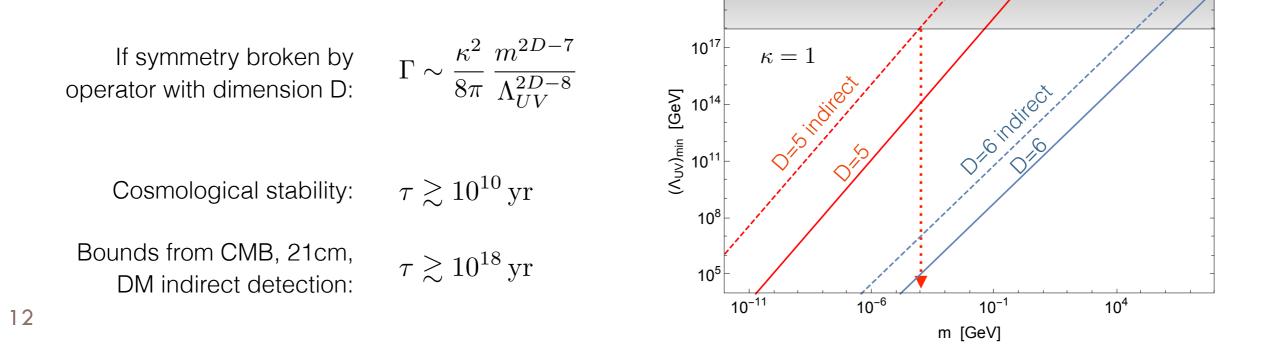


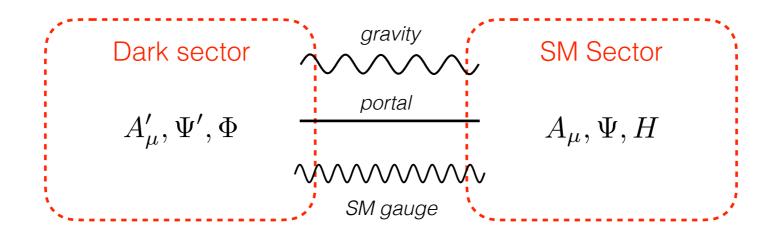


Postulate a new sector with new matter and/or new dynamics

Dark Sector must contain (at least) one DM candidate that is cosmologically stable due to one of its accidental symmetries

10²⁰

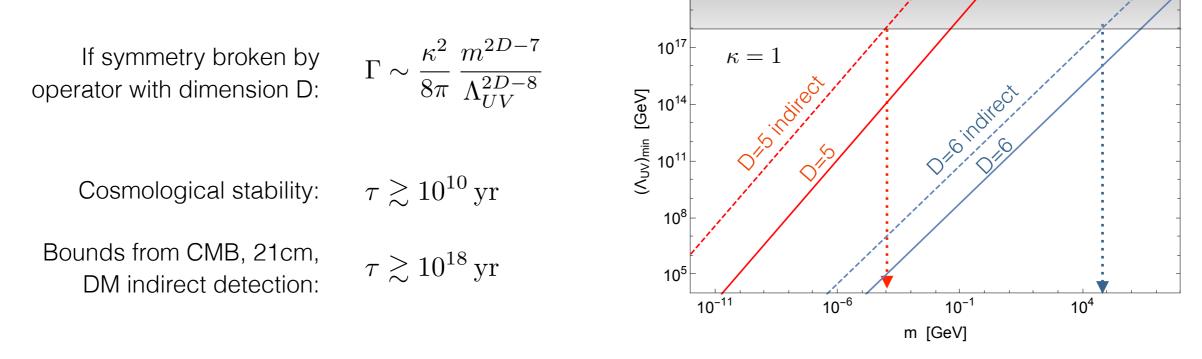




Postulate a new sector with new matter and/or new dynamics

Dark Sector must contain (at least) one DM candidate that is cosmologically stable due to one of its accidental symmetries

10²⁰



12

Weakly-Coupled Dark Sector: Minimal Dark Matter
 [Cirelli, Fornengo, Strumia NPB 753 (2006) 178]

Dark Sector = 1 Dirac fermion transforming as a 5-plet of $SU(2)_{EW}$ with Y=0

Weakly-Coupled Dark Sector: Minimal Dark Matter
 [Cirelli, Fornengo, Strumia NPB 753 (2006) 178]

Dark Sector = 1 Dirac fermion transforming as a 5-plet of $SU(2)_{EW}$ with Y=0

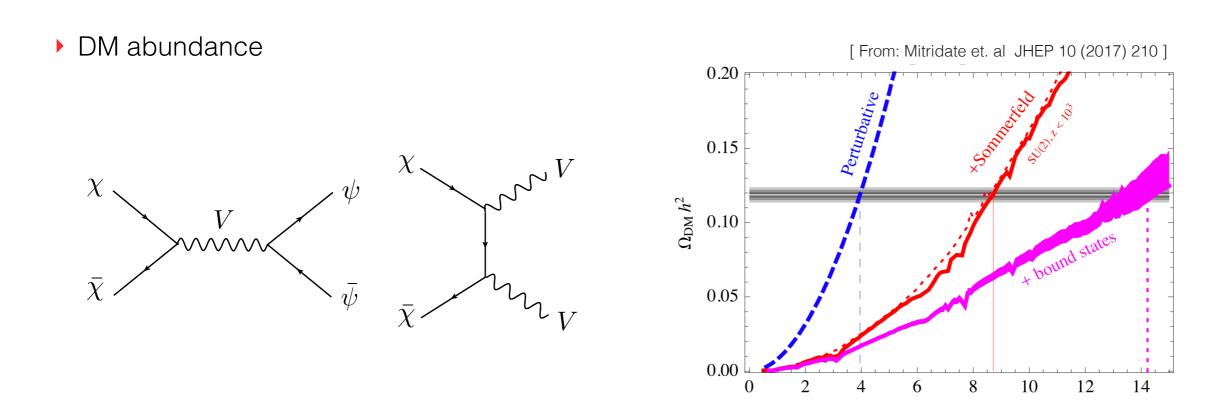
Accidental Stability

$$\mathcal{L} = \bar{\chi} \left(i \mathcal{D} - M \right) \chi$$

 $U(1)_{\chi}$ number violated at D=6 level (ex: $\chi^{\dagger}(\ell \vec{\sigma} H)(H^{\dagger} \vec{\sigma} H), \ \chi^{\dagger} \sigma^{\mu\nu} \ell H W_{\mu\nu}$) Weakly-Coupled Dark Sector: Minimal Dark Matter
 [Cirelli, Fornengo, Strumia NPB 753 (2006) 178]

Dark Sector = 1 Dirac fermion transforming as a 5-plet of $SU(2)_{EW}$ with Y=0

• Accidental Stability $\mathcal{L} = \bar{\chi} \left(i \not D - M \right) \chi$ $U(1)_{\chi}$ number violated at D=6 level (ex: $\chi^{\dagger} (\ell \vec{\sigma} H) (H^{\dagger} \vec{\sigma} H), \ \chi^{\dagger} \sigma^{\mu\nu} \ell H W_{\mu\nu}$)



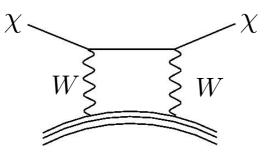
DM mass in TeV

Weakly-Coupled Dark Sector: Minimal Dark Matter

[Cirelli, Fornengo, Strumia NPB 753 (2006) 178]

Dark Sector = 1 Dirac fermion transforming as a 5-plet of $SU(2)_{EW}$ with Y=0

Direct Detection



$$\sigma_{SI} \simeq 2 \times 10^{-46} \mathrm{cm}^2$$

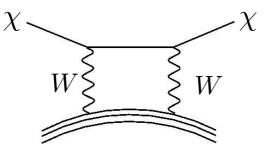
Too small (close to neutrino floor)

Weakly-Coupled Dark Sector: Minimal Dark Matter

[Cirelli, Fornengo, Strumia NPB 753 (2006) 178]

Dark Sector = 1 Dirac fermion transforming as a 5-plet of $SU(2)_{EW}$ with Y=0

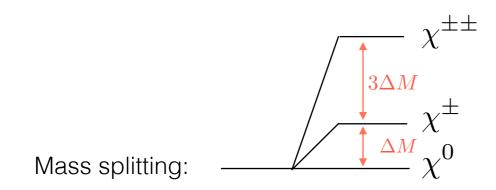
Direct Detection



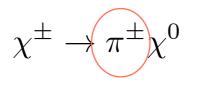
$$\sigma_{SI} \simeq 2 \times 10^{-46} \mathrm{cm}^2$$

Too small (close to neutrino floor)

Collider Searches



Disappearing tracks from inter-multiplet decays



soft and undetected

$$\Delta M = \alpha_2 M_W \sin^2 \frac{\theta_W}{2} = (166 \pm 1) \,\mathrm{MeV}$$

Unfortunately not within reach of FCC 100TeV for a thermal mass value $M\simeq 14\,{\rm TeV}$

• Strongly-Coupled Dark Sector: Vector-like Confining Gauge Theories

Dark Sector = Dark 'quarks' transforming as (R,r) of $G_{DC} \times G_{SM}$, where G_{DC} is a confining dark color gauge group

$$\mathcal{L} = -\frac{1}{4g_{DC}^2}\mathcal{G}_{\mu\nu}^2 + \bar{Q}\left(i\not\!\!D - M\right)Q + y\,\bar{Q}HQ + h.c.$$

Q = Dirac (Majorana) if (*R*,*r*) is (pseudo)real

• Strongly-Coupled Dark Sector: Vector-like Confining Gauge Theories

Dark Sector = Dark 'quarks' transforming as (R,r) of $G_{DC} \times G_{SM}$, where G_{DC} is a confining dark color gauge group

$$\mathcal{L} = -\frac{1}{4g_{DC}^2}\mathcal{G}_{\mu\nu}^2 + \bar{Q}\left(i\not\!\!D - M\right)Q + y\,\bar{Q}HQ + h.c. \qquad Q = \text{Dirac (Majorana) if }(R,r)\text{ is (pseudo)real}$$

Extremely reach phenomenology and several types of composite DM candidates

Туре	Accidental Symmetry
Dark Baryons	$U(1)_{DB}$
Dark Mesons	Species number $U(1)_i$, G-parity
Gluequarks	Z ₂ dark parity
($Q\mathcal{G}$ bound states in theories with adjoint dark quarks)	

— [Antipin, Redi, Strumia, Vigiani JHEP 1507 (2015) 039] —

	$SU(N_{DC})$	$SU(2)_{EW}$	$U(1)_Y$
L		2	-1/2
N		1	0
L^c	\Box	$\overline{2}$	+1/2
N^c	$\overline{\Box}$	1	0

$$\mathcal{L} = -\frac{1}{4g_{DC}^2}G_{\mu\nu}^2 + \bar{L}(i\not\!\!D - M_L)L + \bar{N}(i\not\!\!\partial - M_N)N + y\bar{N}LH + h.c.$$

Accidental symmetry: dark baryon number

DM candidate:
$$\mathcal{B} \sim (N \dots N)$$
 spin = N_{DC}/2, singlet of G_{SM}
N_{DC}

——— [R.C., Mitridate, Podo, Redi JHEP 1902 (2019) 187] —

$$\begin{array}{ccc} SU(N_{DC}) & SU(2)_{EW} & U(1)_Y \\ adj & 3 & 0 \end{array}$$

$$\mathcal{L} = -\frac{1}{4g_{DC}^2}G_{\mu\nu}^2 + V^{\dagger}i\bar{\sigma}^{\mu}D_{\mu}V - \frac{M_V}{2}(VV + V^{\dagger}V^{\dagger})$$

Accidental symmetry: dark parity ($V \rightarrow -V$)

V

DM candidate: (neutral component of) gluequark $Vg = 3_0$ of G_{SM}

V

- [R.C., Mitridate, Podo, Redi JHEP 1902 (2019) 187] -

$$\begin{array}{ccc} SU(N_{DC}) & SU(2)_{EW} & U(1)_Y \\ adj & 3 & 0 \end{array}$$

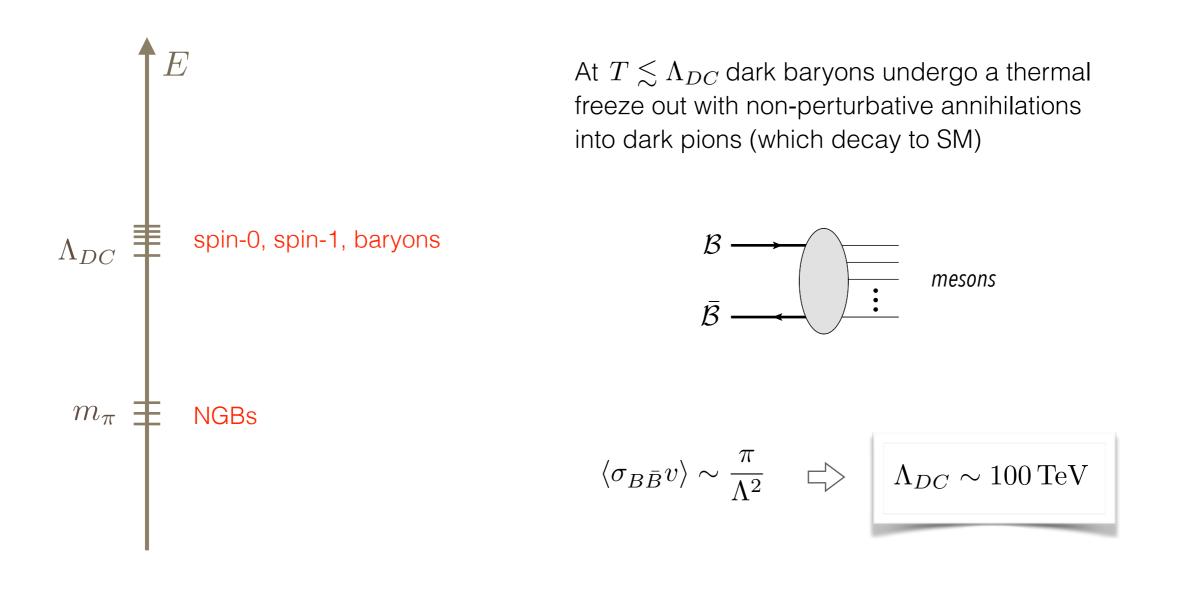
$$\mathcal{L} = -\frac{1}{4g_{DC}^2}G_{\mu\nu}^2 + V^{\dagger}i\bar{\sigma}^{\mu}D_{\mu}V - \frac{M_V}{2}(VV + V^{\dagger}V^{\dagger})$$

Accidental symmetry: dark parity ($V \rightarrow -V$)

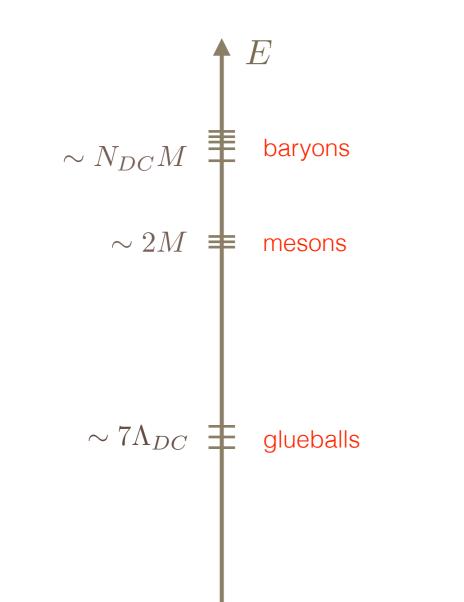
DM candidate: (neutral component of) gluequark $Vg = 3_0$ of G_{SM}

Two different regimes:

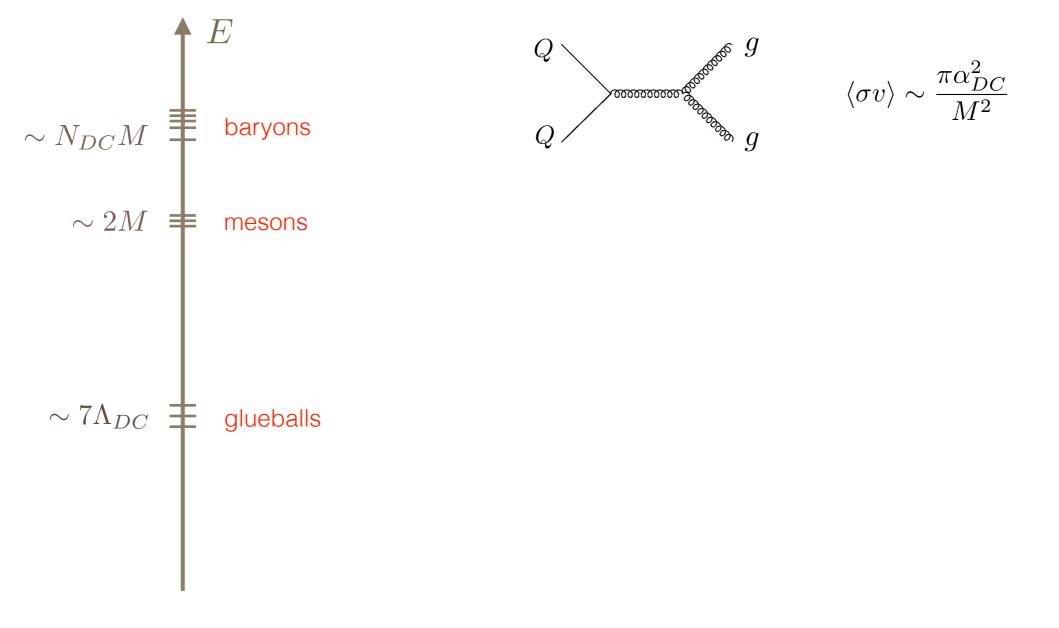
- Light dark quarks $(M < \Lambda_{DC})$
- Heavy dark quarks $(M > \Lambda_{DC})$



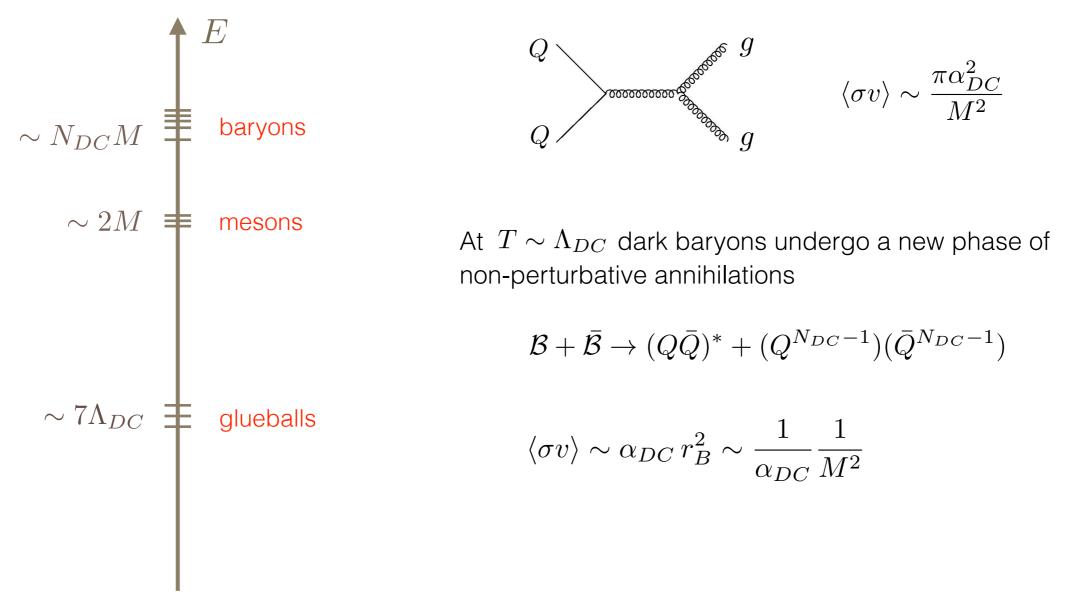
[K. Griest, M. Kamionkowski, PRL 64 (1990) 615
 Antipin, Redi, Strumia, Vigiani JHEP 1507 (2015) 039]



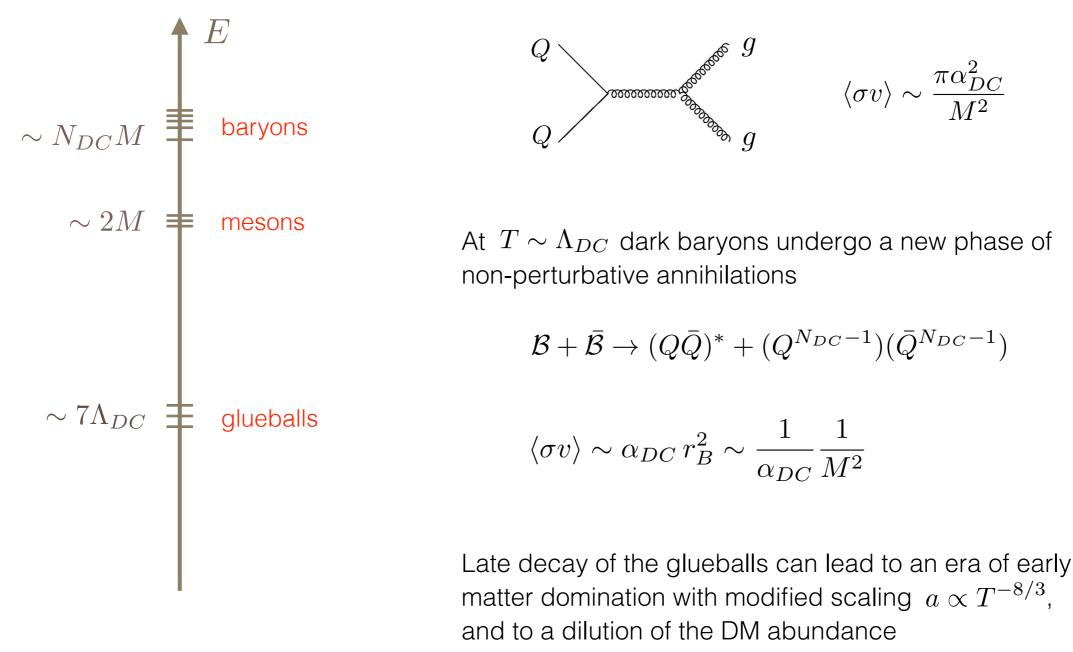
At $T\sim M\,$ dark quarks have a perturbative freeze out

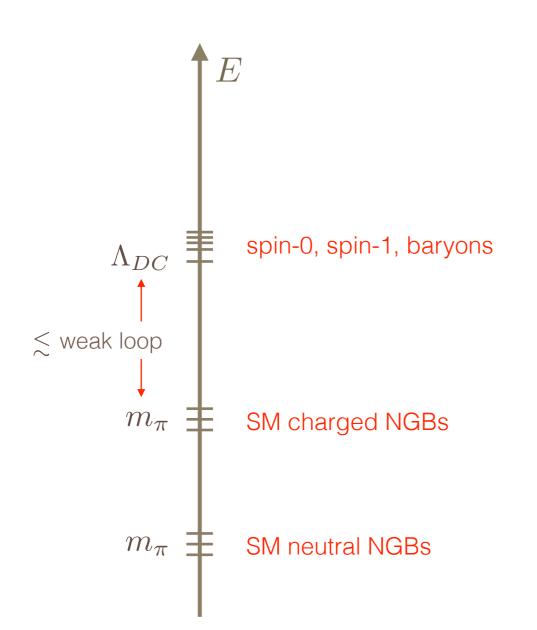


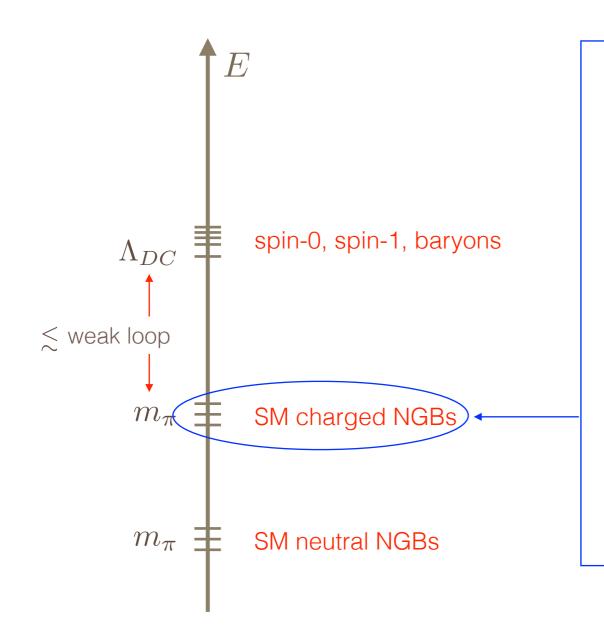
At $T\sim M\,$ dark quarks have a perturbative freeze out



At $T\sim M\,$ dark quarks have a perturbative freeze out







Dark pions charged under the SM

$$m_\pi^2 \sim \frac{g^2}{16\pi^2} \Lambda_{DC}^2 + m_\psi \Lambda_{DC}$$

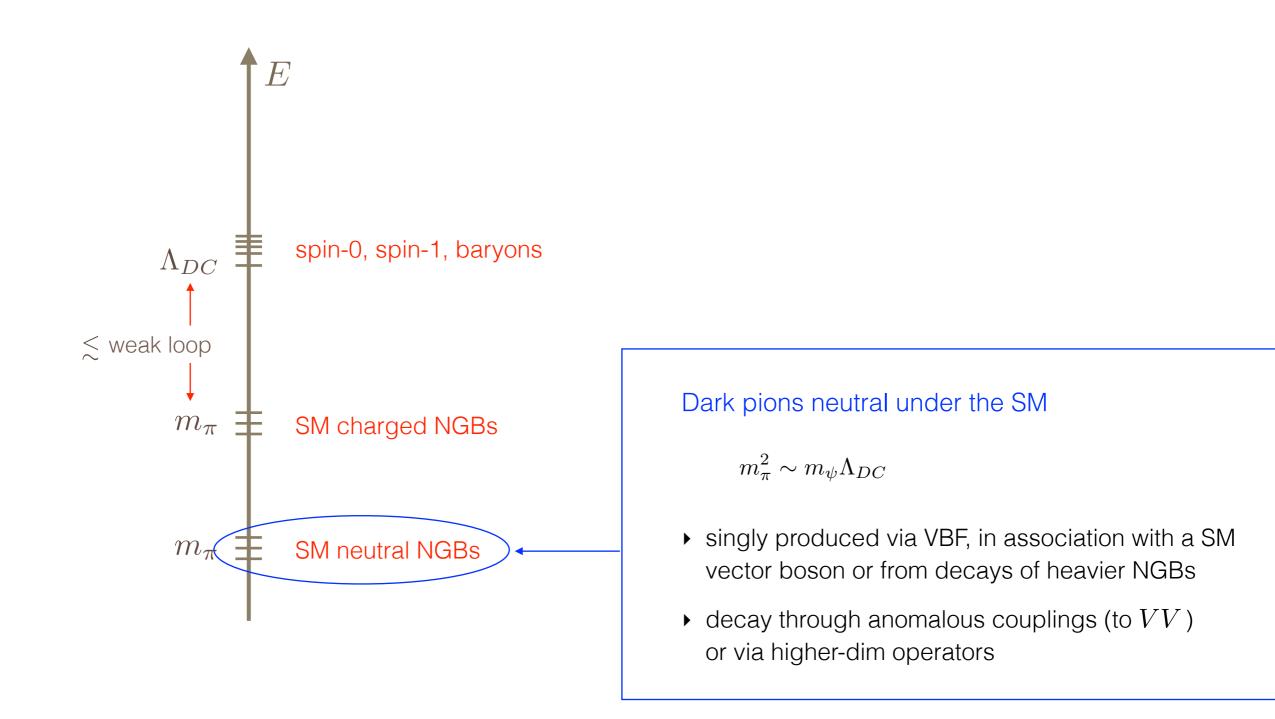
pair produced via Drell-Yan

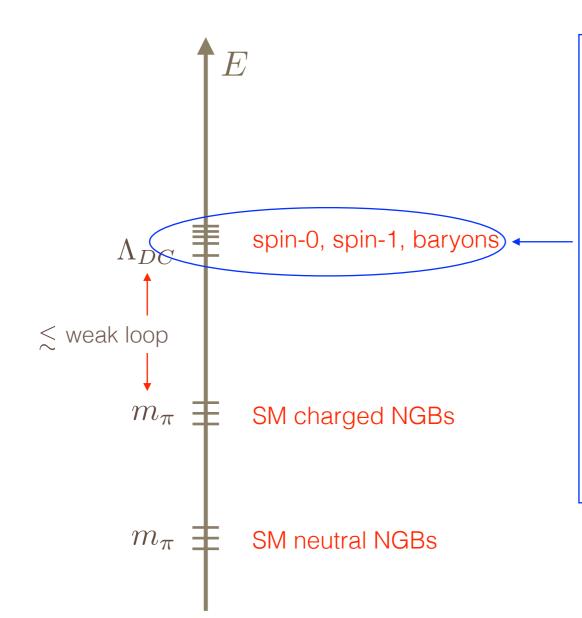
$$pp \to V \to \pi\pi$$
 (V=W, Z, γ)

 decay through anomalous/1-loop couplings or Yukawa couplings

$$\pi \to VV$$

 $\pi \to \pi' V / \pi' H$ $(H = W_L, Z_L, h)$



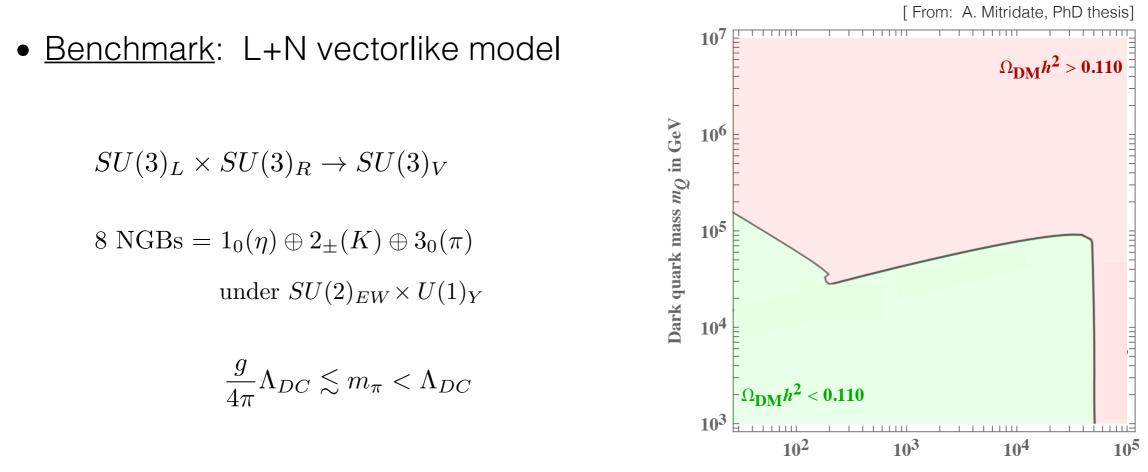


spin-1 resonances

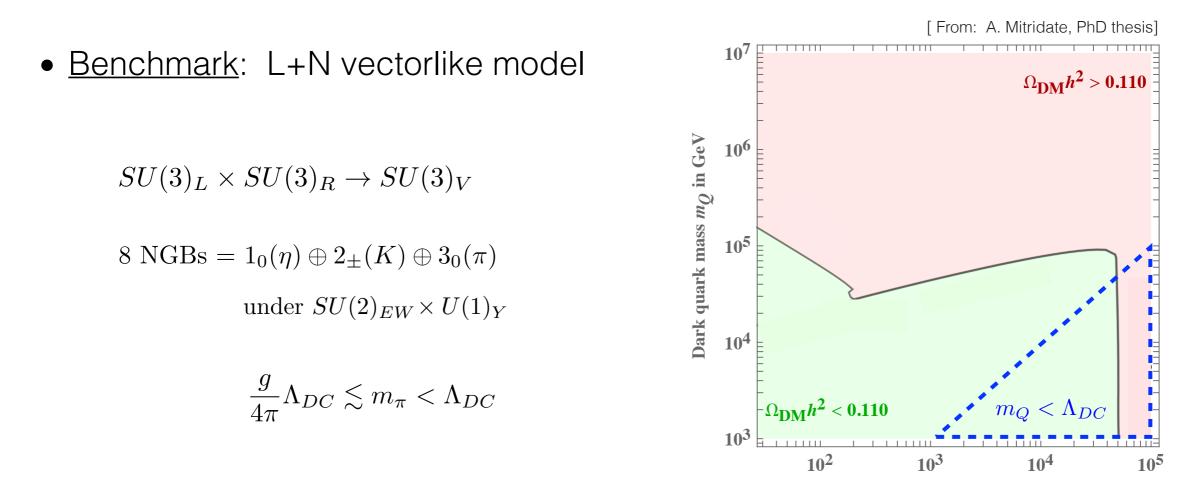
- singly produced via Drell-Yan
- decay mostly to pairs of NGBs if kinematically allowed, decays to SM fermions parametrically suppressed

$$\Gamma(\rho \to \pi\pi) \sim \frac{g_{\rho}^2}{8\pi} m_{\rho}$$

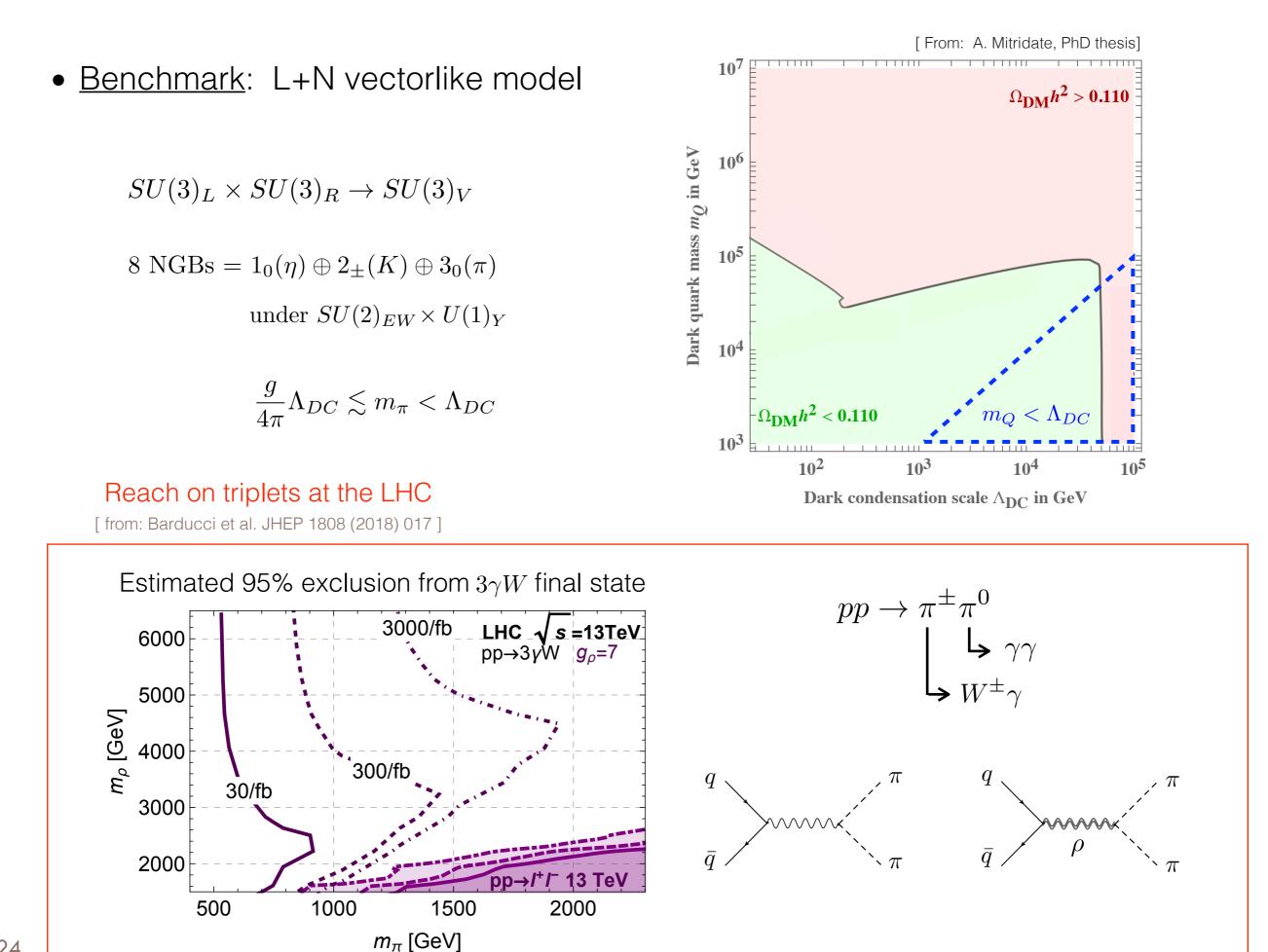
$$\Gamma(\rho \to f\bar{f}) \sim \frac{1}{8\pi} \frac{g_{SM}^4}{g_{\rho}^2} m_{\rho}$$

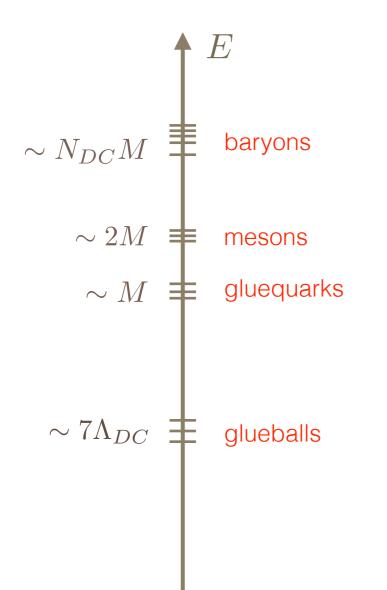


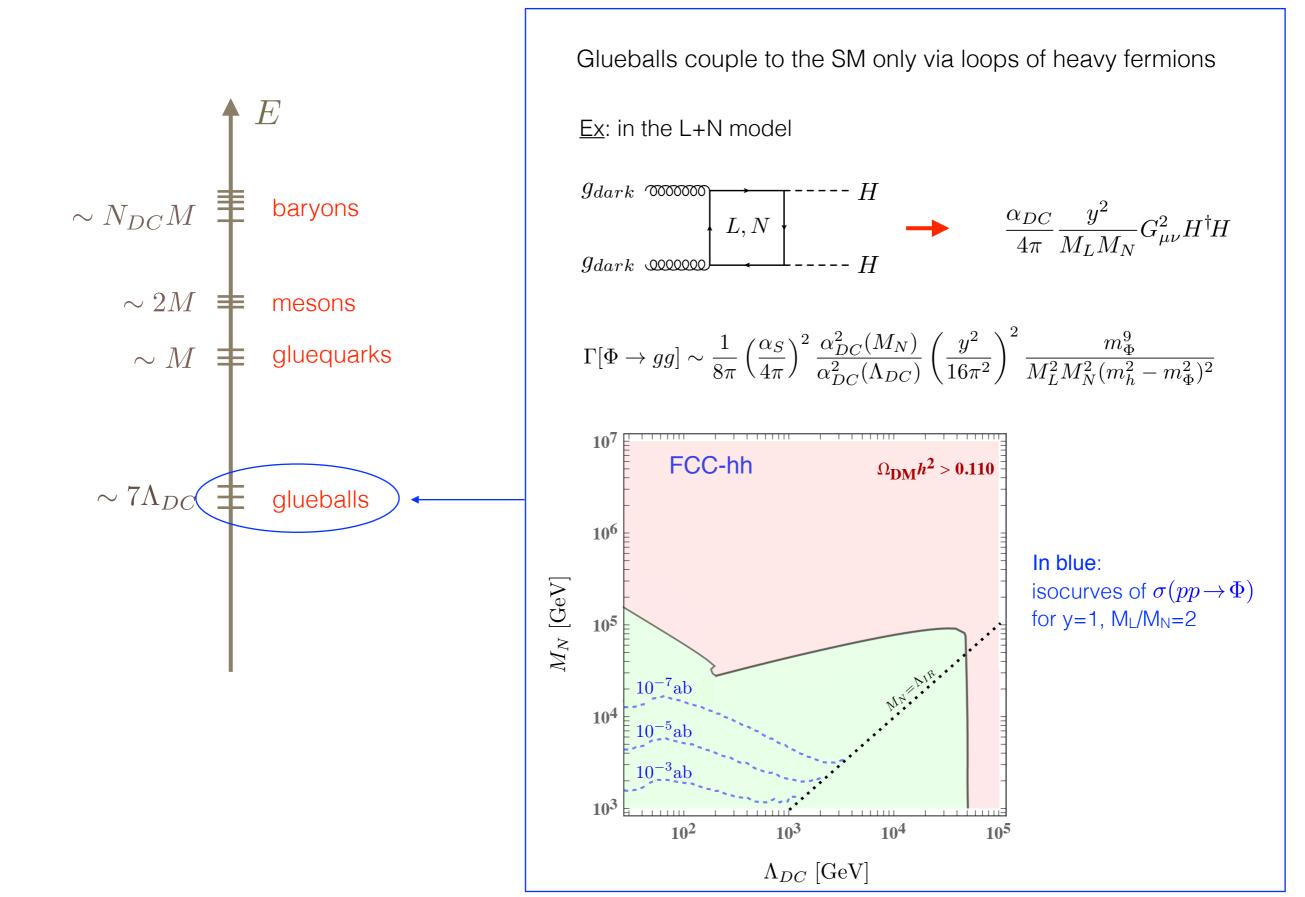
Dark condensation scale $\Lambda_{\mbox{\rm DC}}$ in GeV



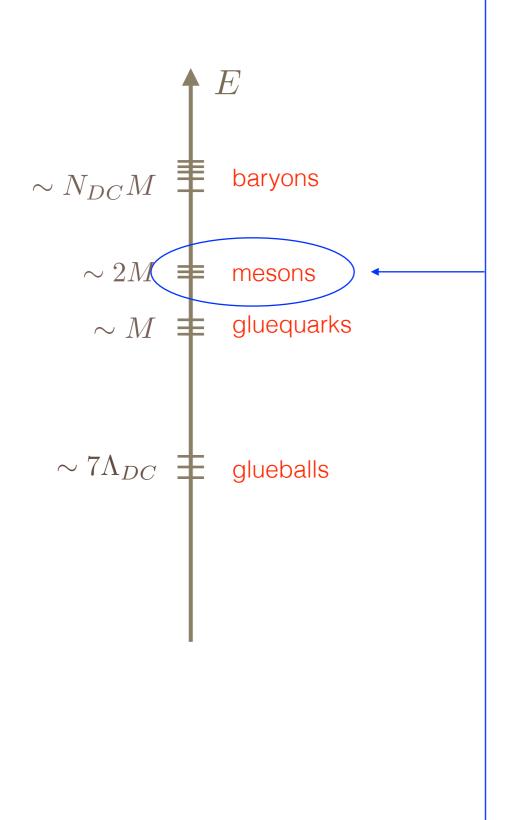
Dark condensation scale Λ_{DC} in GeV





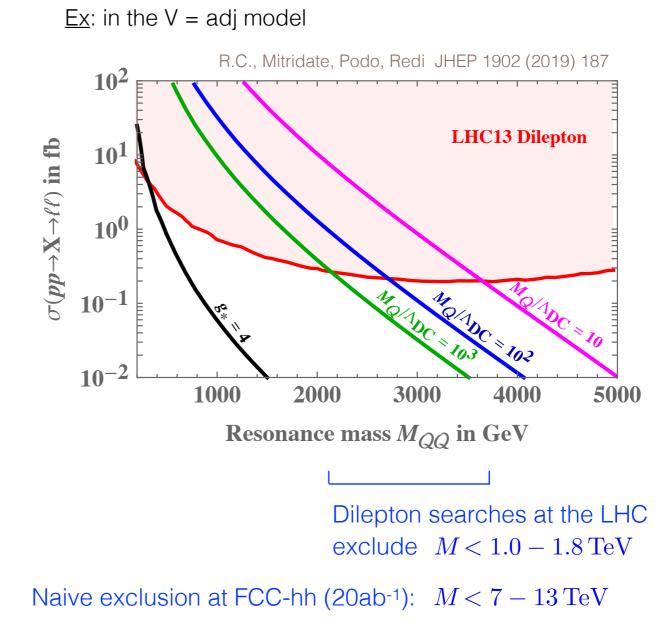


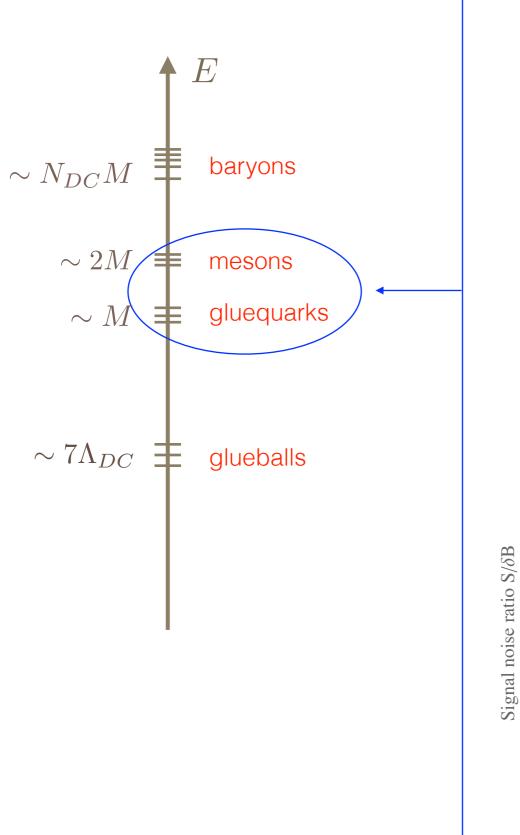
25

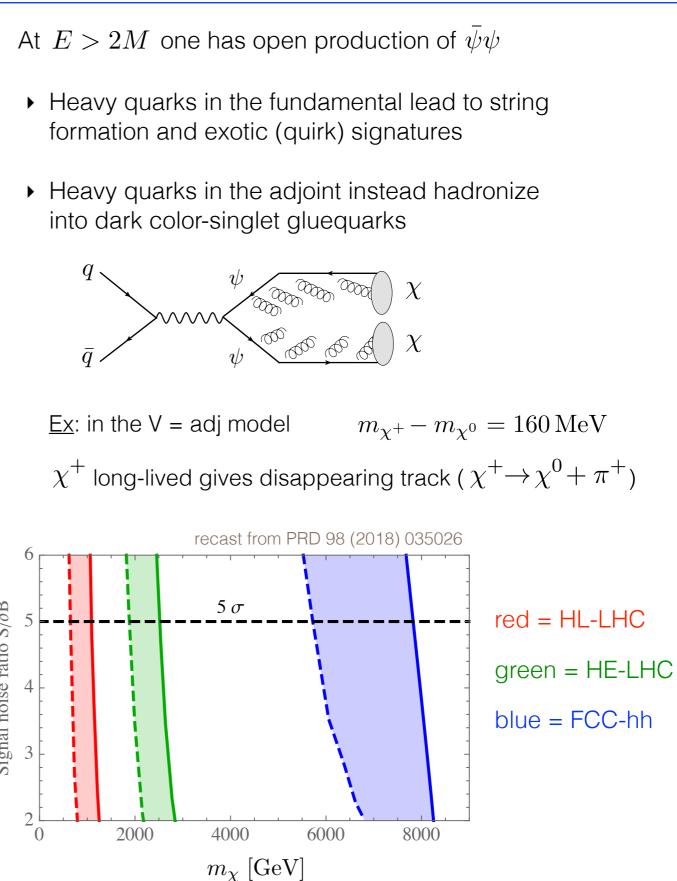


Heavy mesons are *perturbative* quarkonia bound states with calculable properties

 Spin-1 mesons are singly produced via Drell-Yan and have a sizeable (~7%) BR into SM leptons







Dark Pions as Accidental DM

Dark mesons (pions) do not have dark baryon number but can be stable due to some accidental species number

$$\pi \sim (\bar{Q}_1 Q_2) \qquad \qquad U(1): \begin{cases} Q_1 \to e^{-i\alpha} Q_1 \\ Q_2 \to e^{+i\alpha} Q_2 \end{cases}$$

Dark Pions as Accidental DM

Dark mesons (pions) do not have dark baryon number but can be stable due to some accidental species number

$$\pi \sim (\bar{Q}_1 Q_2) \qquad \qquad U(1): \begin{cases} Q_1 \to e^{-i\alpha} Q_1 \\ Q_2 \to e^{+i\alpha} Q_2 \end{cases}$$

In general, species numbers are broken by Yukawa couplings or D=5 operators:

$$(\bar{Q}_1 Q_2)H$$
 if $(\bar{Q}_1 Q_2) = 2_{\pm \frac{1}{2}}$ of SU(2)_{EW} x U(1)_Y
 $(\bar{Q}_1 Q_2)(HH)$ if $(\bar{Q}_1 Q_2) = 1_0, 3_0$ of SU(2)_{EW} x U(1)_Y

Dark Pions as Accidental DM

Dark mesons (pions) do not have dark baryon number but can be stable due to some accidental species number

$$\pi \sim (\bar{Q}_1 Q_2) \qquad \qquad U(1): \begin{cases} Q_1 \to e^{-i\alpha} Q_1 \\ Q_2 \to e^{+i\alpha} Q_2 \end{cases}$$

In general, species numbers are broken by Yukawa couplings or D=5 operators:

$$(\bar{Q}_1 Q_2)H$$
 if $(\bar{Q}_1 Q_2) = 2_{\pm \frac{1}{2}}$ of SU(2)_{EW} x U(1)_Y
 $(\bar{Q}_1 Q_2)(HH)$ if $(\bar{Q}_1 Q_2) = 1_0, 3_0$ of SU(2)_{EW} x U(1)_Y

There is a way, however, to avoid such breaking.

	$SU(N_{DC})$	$SU(2)_{EW}$	$U(1)_{3V}$	$U(1)_V$
ψ_1			+1	+1
ψ_2			-1	+1
χ_1	\Box	\Box	-1	-1
χ_2	$\overline{\Box}$	$\overline{\Box}$	+1	-1

 $\mathcal{L}_{mass} = M_1 \psi_1 \chi_1 + M_2 \psi_2 \chi_2$

$$\mathcal{L}_{5D} \supset \psi_1 \chi_2 H^{\dagger} H, \quad \psi_2 \chi_1 H^{\dagger} H$$

breaks species number U(1)_{3V}

Global Symmetry breaking pattern:

 $\begin{array}{c} \text{spont.}\\ SU(4)_L \times SU(4)_R \times U(1)_V \to SU(4)_V \times U(1)_V\\ & \stackrel{\textstyle \buildrel \label{eq:spont}}{\buildrel \buildrel \buildrel \label{eq:spont}} SU(2)_{EW} \times U(1)_{3V} \times U(1)_V\\ & \text{expl.} \end{array}$

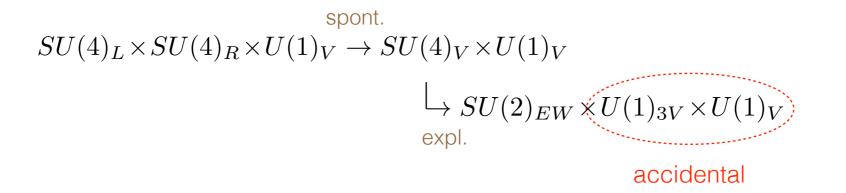
	$SU(N_{DC})$	$SU(2)_{EW}$	$U(1)_{3V}$	$U(1)_V$
ψ_1			+1	+1
ψ_2			-1	+1
χ_1	\Box	\Box	-1	-1
χ_2	$\overline{\Box}$	$\overline{\Box}$	+1	-1

 $\mathcal{L}_{mass} = M_1 \psi_1 \chi_1 + M_2 \psi_2 \chi_2$

$$\mathcal{L}_{5D} \supset \psi_1 \chi_2 H^{\dagger} H, \quad \psi_2 \chi_1 H^{\dagger} H$$

breaks species number U(1)_{3V}

Global Symmetry breaking pattern:



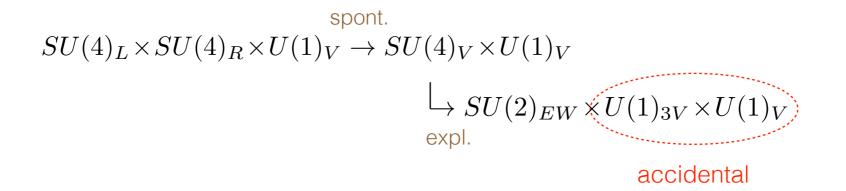
_	$SU(N_{DC})$	$SU(2)_{EW}$	$U(1)_{3V}$	$U(1)_V$
ψ_1			+1	+1
ψ_2			-1	+1
χ_1	\Box	$\overline{\Box}$	-1	-1
χ_2	\Box	$\overline{\Box}$	+1	-1

 $\mathcal{L}_{mass} = M_1 \psi_1 \chi_1 + M_2 \psi_2 \chi_2$

$$\mathcal{L}_{5D} \supset \psi_1 \chi_2 H^{\dagger} H, \quad \psi_2 \chi_1 H^{\dagger} H$$

breaks species number U(1)_{3V}

Global Symmetry breaking pattern:



15 (pseudo) NGBs = 3_{\pm} , 3_0 , 3_0 ', 1_{\pm} , 1_0

$$1_{+} \sim (\psi_{1}\chi_{2})$$
$$1_{-} \sim (\psi_{2}\chi_{1})$$
$$1_{0} \sim (\psi_{1}\chi_{1} - \psi_{2}\chi_{2})$$

All the NGBs decay through 5D operators

[RC, Podo, Revello arXiv:2008.10607]

	$SU(N_{DC})$	$U(1)_D$	$SU(2)_{EW}$	$U(1)_{3V}$	$U(1)_V$
ψ_1		+1		+1	+1
ψ_2		-1		-1	+1
χ_1	\Box	-a	$\overline{\Box}$	-1	-1
χ_2	$\overline{\Box}$	+a	$\overline{\Box}$	+1	-1

For $a \neq 1$ the representations are *complex*, no mass term or 5D operators allowed by gauge invariance

[RC, Podo, Revello arXiv:2008.10607]

	$SU(N_{DC})$	$U(1)_D$	$SU(2)_{EW}$	$U(1)_{3V}$	$U(1)_V$
ψ_1		+1		+1	+1
ψ_2		-1		-1	+1
χ_1	$\overline{\Box}$	-a	\Box	-1	-1
χ_2	$\overline{\Box}$	+a	\Box	+1	-1

For $a \neq 1$ the representations are *complex*, no mass term or 5D operators allowed by gauge invariance

Free parameters:

dark dynamical scale: Λ_D

dark coupling: e_D

dark charge: a

hypercharge-dark photon mixing: ε

[RC, Podo, Revello arXiv:2008.10607]

	$SU(N_{DC})$	$U(1)_D$	$SU(2)_{EW}$	$U(1)_{3V}$	$U(1)_V$
ψ_1		+1		+1	+1
ψ_2		-1		-1	+1
χ_1	$\overline{\Box}$	-a	$\overline{\Box}$	-1	-1
χ_2	$\overline{\Box}$	+a	$\overline{\Box}$	+1	-1

For $a \neq 1$ the representations are *complex*, no mass term or 5D operators allowed by gauge invariance

Symmetry breaking pattern:

dark dynamical scale: Λ_D

Free parameters:

dark coupling: e_D

dark charge: a

hypercharge-dark photon mixing: ε

```
SU(4)_L \times SU(4)_R \times U(1)_V \to SU(4)_V \times U(1)_V \downarrow SU(2)_{EW} \times U(1)_{3V} \times U(1)_V
```

expl.

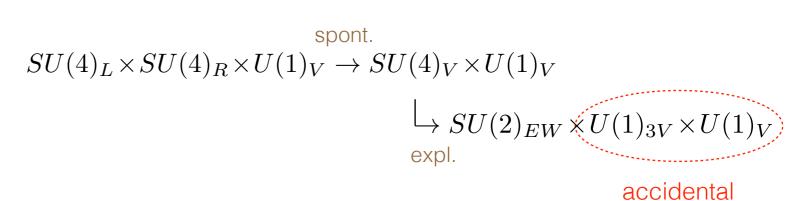
15 NGBs = 3[±], 3⁰, 3⁰', 1[±], 1⁰

[RC, Podo, Revello arXiv:2008.10607]

	$SU(N_{DC})$	$U(1)_D$	$SU(2)_{EW}$	$U(1)_{3V}$	$U(1)_V$
ψ_1		+1		+1	+1
ψ_2		-1		-1	+1
χ_1	$\overline{\Box}$	-a	$\overline{\Box}$	-1	-1
χ_2	$\overline{\Box}$	+a	$\overline{\Box}$	+1	-1

For $a \neq 1$ the representations are *complex*, no mass term or 5D operators allowed by gauge invariance

Symmetry breaking pattern:



15 NGBs = 3[±], 3⁰, 3⁰', 1[±], 1⁰

Free parameters:

dark dynamical scale: Λ_D

dark coupling: e_D

dark charge: a

hypercharge-dark photon mixing: ε

[RC, Podo, Revello arXiv:2008.10607]

	$SU(N_{DC})$	$U(1)_D$	$SU(2)_{EW}$	$U(1)_{3V}$	$U(1)_V$
ψ_1		+1		+1	+1
ψ_2		-1		-1	+1
χ_1	$\overline{\Box}$	-a	\Box	-1	-1
χ_2	$\overline{\Box}$	+a	$\overline{\Box}$	+1	-1

For $a \neq 1$ the representations are *complex*, no mass term or 5D operators allowed by gauge invariance

Symmetry breaking pattern:

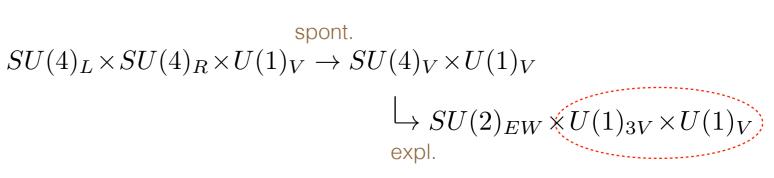
Free parameters:

dark dynamical scale: Λ_D

dark coupling: e_D

dark charge: a

hypercharge-dark photon mixing: ε



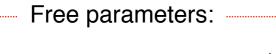
accidental

[RC, Podo, Revello arXiv:2008.10607]

	$SU(N_{DC})$	$U(1)_D$	$SU(2)_{EW}$	$U(1)_{3V}$	$U(1)_V$
ψ_1		+1		+1	+1
ψ_2		-1		-1	+1
χ_1	$\overline{\Box}$	-a	$\overline{\Box}$	-1	-1
χ_2	$\overline{\Box}$	+a	$\overline{\Box}$	+1	-1

For $a \neq 1$ the representations are *complex*, no mass term or 5D operators allowed by gauge invariance

Symmetry breaking pattern:

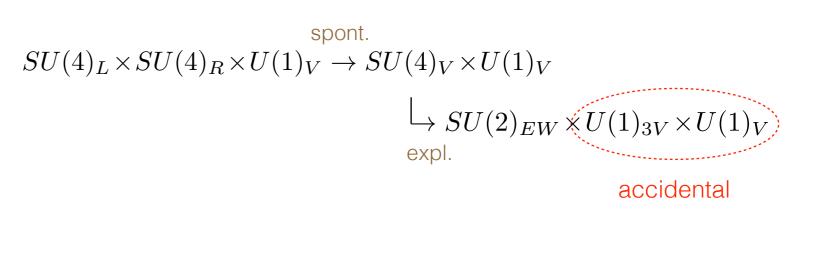


dark dynamical scale: Λ_D

dark coupling: e_D

dark charge: a

hypercharge-dark photon mixing: ε



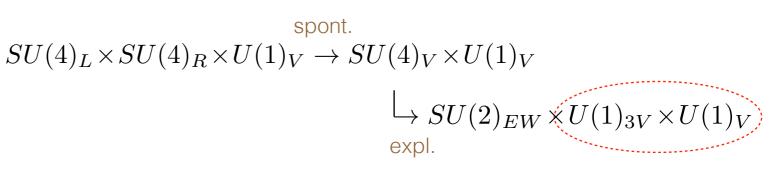
15 NGBs =
$$3^{\pm}$$
, 3^{0} , $3^{0'}$, 1^{\pm} , 1^{0} eaten by dark photon

[RC, Podo, Revello arXiv:2008.10607]

	$SU(N_{DC})$	$U(1)_D$	$SU(2)_{EW}$	$U(1)_{3V}$	$U(1)_V$
ψ_1		+1		+1	+1
ψ_2		-1		-1	+1
χ_1	$\overline{\Box}$	-a	\Box	-1	-1
χ_2	$\overline{\Box}$	+a	$\overline{\Box}$	+1	-1

For $a \neq 1$ the representations are *complex*, no mass term or 5D operators allowed by gauge invariance

Symmetry breaking pattern:



accidental

stable
15 NGBs =
$$3^{\pm}$$
, 3^{0} , $3^{0'}$, $(1^{\pm}, 1^{0})$ eaten by dark photon

pseudo

Free parameters:

dark dynamical scale: Λ_D

dark coupling: e_D

dark charge: a

hypercharge-dark photon mixing: ε

• 1_{\pm} and B are both thermal relics, DM abundance dominated by dark pion for small e_D

$$\pi_{1} \longrightarrow \gamma_{D} \qquad \langle \sigma_{\pi\pi} v \rangle \sim \frac{e_{D}^{4}}{8\pi} \frac{1}{m_{1}^{2}} \sim e_{D}^{2} \frac{\pi}{\Lambda^{2}}$$

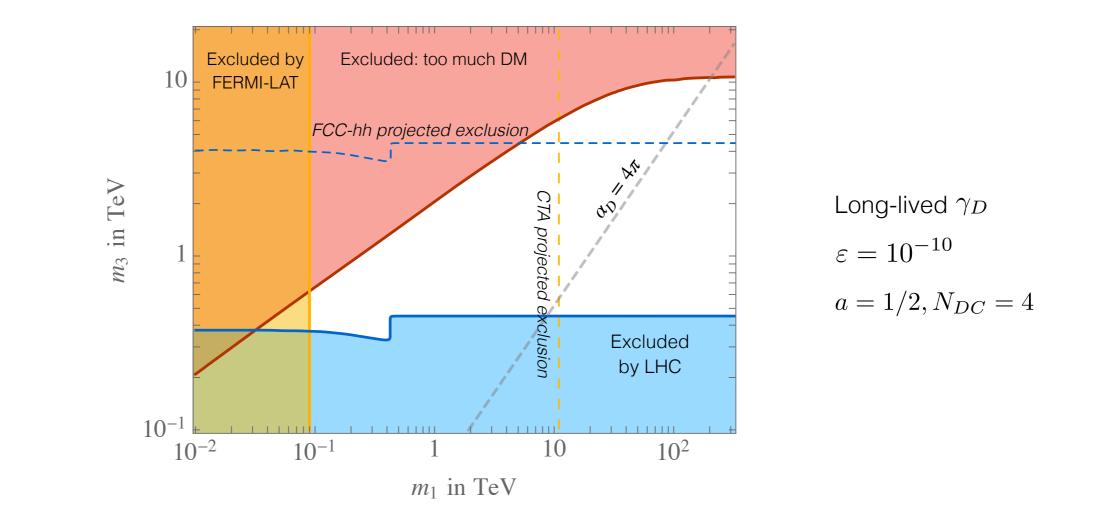
$$\pi_{1} \longrightarrow \gamma_{D} \qquad \langle \sigma_{\pi\pi} v \rangle \sim \frac{e_{D}^{4}}{8\pi} \frac{1}{m_{1}^{2}} \sim e_{D}^{2} \frac{\pi}{\Lambda^{2}}$$

• 1_{\pm} and B are both thermal relics, DM abundance dominated by dark pion for small e_D

$$\pi_{1} \longrightarrow \gamma_{D} \qquad \langle \sigma_{\pi\pi} v \rangle \sim \frac{e_{D}^{4}}{8\pi} \frac{1}{m_{1}^{2}} \sim e_{D}^{2} \frac{\pi}{\Lambda^{2}}$$

$$\pi_{1} \longrightarrow \gamma_{D} \qquad \langle \sigma_{\pi\pi} v \rangle \sim \frac{e_{D}^{4}}{8\pi} \frac{1}{m_{1}^{2}} \sim e_{D}^{2} \frac{\pi}{\Lambda^{2}}$$

• Interesting correlation between collider searches and cosmological observations



Accidental DM is an attractive framework with several realizations (most involve new strongly-coupled dynamics, with the notable exception of Minimal DM)

- Accidental DM is an attractive framework with several realizations (most involve new strongly-coupled dynamics, with the notable exception of Minimal DM)
- Current models are interesting though not completely satisfactory. For example, we still lack one with fully-fledged SM gauge coupling unification

- Accidental DM is an attractive framework with several realizations (most involve new strongly-coupled dynamics, with the notable exception of Minimal DM)
- Current models are interesting though not completely satisfactory. For example, we still lack one with fully-fledged SM gauge coupling unification
- Despite the dark quarks are charged under the SM, models with thermal DM are elusive due to their very high scale. Exception: chiral dynamics

- Accidental DM is an attractive framework with several realizations (most involve new strongly-coupled dynamics, with the notable exception of Minimal DM)
- Current models are interesting though not completely satisfactory. For example, we still lack one with fully-fledged SM gauge coupling unification
- Despite the dark quarks are charged under the SM, models with thermal DM are elusive due to their very high scale. Exception: chiral dynamics
- Cosmology can be completely different for dark sectors that are SM neutral and decoupled from the SM

See for example: Morrison, Profumo, Robinson arXiv:2010.03586; Redi, Tesi arXiv:2011.10565

- Accidental DM is an attractive framework with several realizations (most involve new strongly-coupled dynamics, with the notable exception of Minimal DM)
- Current models are interesting though not completely satisfactory. For example, we still lack one with fully-fledged SM gauge coupling unification
- Despite the dark quarks are charged under the SM, models with thermal DM are elusive due to their very high scale. Exception: chiral dynamics
- Cosmology can be completely different for dark sectors that are SM neutral and decoupled from the SM

See for example: Morrison, Profumo, Robinson arXiv:2010.03586; Redi, Tesi arXiv:2011.10565

Much work still needed (ex: models with non-thermal DM production)