# Temperature dependence of the axion mass: a case for master-field simulations

Martin Lüscher, Theoretical Physics Department, CERN

Based on work done with Leonardo Giusti

Università di Torino, 20 November 2020

#### Physics of the axial anomaly

#### The flavour-singlet axial current satisfies

 $\partial_\mu j^5_\mu(x) = 2 N_{
m f} q(x) + {
m mass terms}$  Adler '69 Bell & Jackiw '69

$$q(x) \propto \epsilon_{\mu\nu\rho\sigma} F^a_{\mu\nu}(x) F^a_{\rho\sigma}(x), \qquad Q \equiv \int_x q(x) \in \mathbb{Z} \quad \text{(if } A_\mu \text{ is smooth)}$$

• The  $\eta'$  is not a Goldstone boson

$$\begin{split} m_{\pi}^2 \ll m_{\eta'}^2 \simeq \frac{2N_{\rm f}}{F_{\pi}^2} \, \chi_t|_{N_{\rm f}=0} & \text{Witten '79} \\ \chi_t = \frac{\langle Q^2 \rangle}{V} = \int_x \langle q(x)q(0) \rangle \quad (\text{``topological susceptibility''}) \end{split}$$

• Strong CP problem: Why is there no  $\theta Q$  term in QCD?

#### Peccei–Quinn & the axion

Promote flavour-singlet axial U(1) to a non-anomalous chiral symmetry

$$S_{\rm axion} = \int_x \left\{ \frac{1}{2} \partial_\mu a(x) \partial_\mu a(x) + \frac{i}{M} a(x) q(x) \right\}$$
 Peccei & Quinn '77

- ★ Axial U(1) transformation:  $a(x) \rightarrow a(x) + \omega$
- ★  $\langle a(x) \rangle = 0$  minimizes effective action  $\Rightarrow$  CP is naturally preserved
- ★ Axion = Goldstone boson with mass  $m_a^2 = \frac{\chi_t}{M^2} + \dots$

The axion is a dark-matter candidate

 $\Rightarrow$  need to understand the temperature dependence of its mass at  $T > T_{\rm c}$ 

Is  $\chi_t$  a well-defined quantity?

The 2-point function

$$\langle q(x)q(0)\rangle \underset{x\to 0}{\sim} (x^2)^{-4}$$

has a non-integrable short-distance singularity

 $\Rightarrow$  its Fourier transform

$$\langle q(x)q(0)\rangle = _{\text{F.T.}} c_0 \Lambda^4 + c_1 \Lambda^2 p^2 + c_2 (p^2)^2 + (p^2)^3 \int_0^\infty \mathrm{d}s \, \frac{\rho(s)}{s^3(s+p^2)}$$

is determined only up to contact terms

 $\sim$ 30 years of theoretical development were required to fully resolve this issue!

Lattice QCD with exact chiral symmetry

Representation of  $\chi_t$  through density chains

$$\int_{x,y,\ldots} \langle P_{rs}(x) S_{st}(y) \dots S_{uv}(z) \rangle$$

and via the Yang-Mills gradient flow

$$\partial_s B_\mu = D_\nu G_{\nu\mu}, \quad B_\mu|_{s=0} = A_\mu$$
$$\chi_t = \int_x \langle q(x,s)q(0,s) \rangle$$

Ginsparg & Wilson '82 Kaplan '92 Hasenfratz et al. '98 Neuberger '98 ML '98

Giust et al. 02 Giusti, Rossi & Testa '04 ML '04

Atiyah & Bott '82 ML '10 ML & Weisz '11 Cè et al. '15  $\chi_t$  at temperatures  $T \gg T_{
m c}$ 

Common lore says that

thermal masses in QCD  $\propto T$   $\,$  but  $\,$   $\chi_t \propto T^{-7-N_{\rm f}/3}$ 

i.e. the axion rapidly becomes very light at high T!

Based on the classical instanton bound

 $S \ge 8\pi^2 |Q|,$ 

the renormalization group and some ad hoc assumptions

At T > 0 the semi-classical approximation is however extremely complicated and its applicability is anyway questionable

Kraan & van Baal '98

## How about computing the T-dependence of $\chi_t$ in LQCD?

In principle straightforward, but

• Require long runs if  $\langle Q^2 \rangle = \chi_t V \ll 1$ 



- Lattice spacing a must satisfy 1/a > T
- Topology-freezing issue



Field variables at distances  $\gg m_\pi^{-1}$  are statistically independent



Field variables at distances  $\gg m_\pi^{-1}$  are statistically independent



Field variables at distances  $\gg m_{\pi}^{-1}$  are statistically independent



Field variables at distances  $\gg m_\pi^{-1}$  are statistically independent



Field variables at distances  $\gg m_\pi^{-1}$  are statistically independent



 $\Rightarrow$  On an infinite lattice, the expectation values  $\langle \mathcal{O} \rangle$  may conceivably be obtained from a single field!

#### Free-field example

Draw a Gaussian random number  $\eta(x)$  at each point x of an infinite lattice

$$\phi(x) = \sum_y K(x-y)\eta(y), \qquad K: \text{ kernel of } (-\Delta+m^2)^{-1/2}$$

$$\Rightarrow \quad \lim_{V \to \infty} \frac{1}{V} \sum_{z \in V} \phi(x_1 + z) \dots \phi(x_n + z) = \langle \phi(x_1) \dots \phi(x_n) \rangle$$

- The way the subvolume V grows is irrelevant
- Master fields are not unique!

#### **Translation averages**

Let  $\mathcal{O}(x)$  be some quasi-local observable with footprint  $\ll V$ 

 $\Rightarrow$  The translation average

$$\langle\!\langle \mathcal{O} \rangle\!\rangle = \frac{1}{V} \sum_{x} \mathcal{O}(x)$$

has mean  $\langle \mathcal{O} \rangle$  and variance

$$\frac{1}{V}\sum_{x} \langle \mathcal{O}(x)\mathcal{O}(0)\rangle_{\rm c}$$

Moreover, its distribution is Gaussian up to higher-order corrections in 1/V

#### **Master-field simulations**

- Consider a physically large lattice with periodic bc
- Run a simulation as usual, stop after thermalization and use the last configuration
- $\langle \mathcal{O} \rangle = \langle\!\langle \mathcal{O} \rangle\!\rangle$  up to statistical errors of  $\mathcal{O}(V^{-1/2})$

## Cost balance

$$\begin{array}{l} \text{large lattice} \\ 1 \text{ configuration} \end{array} \right\} \simeq \left\{ \begin{array}{l} \text{small lattice} \\ N \text{ configurations, } N = \frac{V_{\text{large}}}{V_{\text{small}}} \end{array} \right.$$

E.g.  $L = 30 \,\mathrm{fm}$  instead of  $10^4$  configurations at  $L = 3 \,\mathrm{fm}$ 

## Statistical error estimation

$$\begin{split} \frac{1}{V} \sum_{x} \langle \mathcal{O}(x) \mathcal{O}(0) \rangle_{c} &= \frac{1}{V} \bigg\{ \sum_{|x| \le R} \langle \mathcal{O}(x) \mathcal{O}(0) \rangle_{c} + \mathcal{O}(e^{-mR}) \bigg\} \\ &= \frac{1}{V} \bigg\{ \sum_{|x| \le R} \langle \! \langle \mathcal{O}(x) \mathcal{O}(0) \rangle \! \rangle_{c} + \mathcal{O}(e^{-mR}) + \mathcal{O}(V^{-1/2}) \bigg\} \end{split}$$

Note: Must have both  $mR\gg 1$  and  $L\gg R$ 

### **Topology freezing?**

Becomes irrelevant at large V, since

$$\langle \mathcal{O} \rangle_{Q=\nu} = \langle \mathcal{O} \rangle + (r^2 - 1) \frac{\langle \mathcal{O} Q^2 \rangle_c}{2\chi_t V} + \mathcal{O}(V^{-2}), \qquad r \equiv \frac{\nu}{\sqrt{\langle Q^2 \rangle}}$$

for any quasi-local scalar observable  $\ensuremath{\mathcal{O}}$ 

Brower et al. '03, Aoki et al. '07

**Note:** Must have  $\chi_t V \gg 1$ 

⇒ Master-field simulations can bypass both the rare-events and the topology-freezing issue!

## Master-field simulations of the SU(3) gauge theory

| Lattice              | a [fm] | $T \; [MeV]$ | L [fm] |
|----------------------|--------|--------------|--------|
| $6 \times 256^3$     | 0.073  | 449          | 19     |
| $8 \times 384^3$     | 0.055  | 449          | 21     |
| $12 \times 512^3$    | 0.037  | 449          | 19     |
| $6 \times 512^3$     | 0.055  | 596          | 28     |
| $8 \times 768^3$     | 0.041  | 596          | 32     |
| $12 \times 1024^{3}$ | 0.028  | 596          | 28     |

Additionally simulated lattices up to  $256^4$  for accurate scale-setting through the reference gradient-flow time  $t_0$ 

## Computation of $\chi_t$

For given gradient-flow time s and radius R, estimate

$$\chi_t(R,s) = a^4 \sum_{x_0} \sum_{|\vec{x}| \le R} \langle q(x,s)q(0,s) \rangle$$

through the translation averages of the observable

$$\mathcal{O}(z) = a^4 \sum_{x_0} \sum_{|\vec{x}| \le R} q(x+z,s)q(z,s)$$



**Example:**  $T = 1.5 T_{c}$ , L = 19 fm



## Results in the continuum limit

| $T/T_{\rm c}$ | $T \; [MeV]$ | $\chi_t  [\mathrm{fm}^{-4}]$ |
|---------------|--------------|------------------------------|
| 0.0           | 0            | 0.839(9)                     |
| 1.5           | 449          | 0.0283(15)                   |
| 2.0           | 596          | 0.00431(34)                  |

- Typically  $\chi_t V = O(100)$
- Fixed-topology effects < 1%



## Conclusions

- \* Rapid decay of  $m_a(T)$  confirmed with unprecedented conceptual clarity and precision
- ★ First physics application of master-field simulations!
- \* The nearly perfect cancellation of short- and long-distance contributions to  $\chi_t$  however remains a bit of a mystery

# Conclusions (cont.)

Master-field simulations of QCD may have many uses

- Computations of spectral densities and total hadronic decay widths
- $\diamond\,$  Thermodynamic quantities below and above  $T_{\rm c}$

Hansen, Meyer & Robaina '17 Bulava & Hansen '19 Hansen, Lupo & Tantalo '19

First master-field simulations of 2+1-flavour QCD at T=0 are now under way Bruno et al. (Bern-CERN-Edinburgh-Odense-Plymouth)