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Superstring Theory 9+1 d

Our world 3+1d   SU(3)xSU(2)xU(1) SM + GR

1.  Reduce Dim: 10 = 6+4

2.  Break SUSY

Unified theory of quantum gravity

I. 6 Large Dim

AdS/CFT

Brane World

II. 6 small dim

Compactification
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1984: 10 = 4 + 3× 2

Heterotic string [Gross-Harvey-Martinec-Rohm]: E8×E8 or SO(32), 1984 - 6

String Phenomenology [Candelas-Horowitz-Strominger-Witten]: 1986

E8 accommodates SM

SU(3)× SU(2)× U(1) ⊂ SU(5) ⊂ SO(10) ⊂ E6 ⊂ E8

6 extra dimensions is some 6-dimensional manifold X

1 not just a real 6-manifold but a complex 3-fold X

2 X is furthermore Kähler (gαβ̄ = ∂α∂̄β̄K) Why SUSY?

3 X is Ricci flat (vacuum Einstein equations)

4 Rmk: there are other classes of solutions (more later...) but 1,2,3 simplest

What are such manifolds? Just so happens that mathematicians were

independently thinking of the same problem
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A Classic Problem in Mathematics

Euler, Gauss, Riemann Σ: dimR = 2, i.e.,dimC = 1 (in fact Kähler)

Trichtomy classification of (compact orientable) surfaces [Riemann

surfaces/complex algebraic curves] Σ

. . .

g(Σ) = 0 g(Σ) = 1 g(Σ) > 1

χ(Σ) = 2 χ(Σ) = 0 χ(Σ) < 0

Spherical Ricci-Flat Hyperbolic

+ curvature 0 curvature − curvature

Euler number χ(Σ), genus g(Σ)
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Classical Results for Riemann Surface Σ

χ(Σ) = 2− 2g(Σ) = = [c1(Σ)] · [Σ] = = 1
2π

∫
Σ
R = =

2∑
i=0

(−1)ihi(Σ)

Topology Algebraic

Geometry

Differential

Geometry

Index Theorem

(co-)Homology

Invariants
Characteristic

classes
Curvature Betti Numbers

First Chern Class c1(Σ)

Rank of (co-)homology group (Betti Number) hi(Σ)

Complexifies (Künneth) hi =
∑

j+k=i

hj,k, Hodge Number hj,k
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Calabi-Yau

dimC > 1 extremely complicated (high-dim geometry hard: cf. Poincaré

Conjecture/Perelman Thm/Thurston-Hamilton Programme)

Luckily, for our class of Kähler complex manifolds:

CONJECTURE [E. Calabi, 1954, 1957]: M compact Kähler manifold (g, ω)

and ([R] = [c1(M)])H1,1(M).

Then ∃!(g̃, ω̃) such that ([ω] = [ω̃])H2(M ;R) and Ricci(ω̃) = R.

Rmk: c1(M) = 0⇔ Ricci-flat (rmk: Ricci-flat familiar in GR long before strings)

THEOREM [S-T Yau, 1977-8; Fields 1982] Existence Proof

Calabi-Yau: Kähler and Ricci-flat (Strominger & Yau were neighbours at IAS)
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Conjecture/Perelman Thm/Thurston-Hamilton Programme)

Luckily, for our class of Kähler complex manifolds:

CONJECTURE [E. Calabi, 1954, 1957]: M compact Kähler manifold (g, ω)

and ([R] = [c1(M)])H1,1(M).

Then ∃!(g̃, ω̃) such that ([ω] = [ω̃])H2(M ;R) and Ricci(ω̃) = R.

Rmk: c1(M) = 0⇔ Ricci-flat (rmk: Ricci-flat familiar in GR long before strings)

THEOREM [S-T Yau, 1977-8; Fields 1982] Existence Proof

Calabi-Yau: Kähler and Ricci-flat (Strominger & Yau were neighbours at IAS)

YANG-HUI HE (London/Oxford/Nankai) ML CY Torino, 2019 6 / 35



Explicit Examples of Calabi-Yau Spaces

An interesting sequence: 1,2, ??? . . .

dimC = 1
Torus T 2 = S1 × S1

QFT in 10− 2 = 8d

dimC = 2

(1) 4-Torus T 4 = S1×S1×S1×S1

(2) K3 surface

QFT in 10− 4 = 6d

dimC = 3

Unclassified ???

(Yau’s Conjecture: Finite Number)

Desired QFT in 10− 6 = 4d
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The Inevitability of Algebraic Geometry

How to construct CY3? Realize as vanishing locus of polynomials, Algebraic

Geometry e.g., {(p, q)|p2 + q2 − 1 = 0} ⊂ R2 is a circle (1-real dimension)

Complexify and Projectivize (Projective algebraic variety)

Cubic equation in CP2: e.g. CY1 = T 2 {(x, y, z)|x3 + y3 + z3 = 0} ⊂ CP2

(elliptic curve); dimC = 2− 1 = 1

TMH: Homogeneous Eq in CPn, degree = n+1 is Calabi-Yau of dimC = n−1

An Early Physical Challenge to Algebraic Geometry

Particle content in [CHSW]

Generation h1(X,TX) = h2,1

∂
(X)

Anti-Generation h1(X,TX∗) = h1,1

∂
(X)

 Net-gen: χ = 2(h1,1 − h2,1)

= Euler Number (X)

1986 Question: Are there Calabi-Yau threefolds with χ = ±6?

YANG-HUI HE (London/Oxford/Nankai) ML CY Torino, 2019 8 / 35



The First Data-sets in Mathematical Physics/Geometry

[Candelas-A. He-Hübsch-Lutken-Schimmrigk-Berglund] (1986-1990)

CICYs (complete intersection CYs) multi-deg polys in products of CPni CICYs

Problem: classify all configuration matrices; employed the best computers at

the time (CERN supercomputer); q.v. magnetic tape and dot-matrix printout in Philip’s office

7890 matrices, 266 Hodge pairs (h1,1, h2,1), 70 Euler χ ∈ [−200, 0]

[Candelas-Lynker-Schimmrigk, 1990]

Hypersurfaces in Weighted P4

7555 inequivalent 5-vectors wi, 2780 Hodge pairs, χ ∈ [−960, 960]

[Kreuzer-Skarke, mid-1990s - 2000]

Hypersurfaces in (Reflexive, Gorenstein Fano) Toric 4-folds

6-month running time on dual Pentium SGI machine

at least 473,800,776, with 30,108 distinct Hodge pairs, χ ∈ [−960, 960]
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The age of data science in math-

ematical physics/string theory

not as recent as you might think

of course, experimentals physics

had been decades ahead in

data-science/machine-learning

After 40 years of research by

mathematicians and physicists

. . . ...
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The Compact CY3 Landscape

cf. YHH, The Calabi-Yau Landscape: from Geometry, to Physics, to

Machine-Learning, 1812.02893, Springer, to appear, 2019/20

∼ 1010 data-points (and growing, still mined by many international collabs:

London/Oxford, Vienna, Northeastern, Jo’burg, Munich, ,. . . )

a Georgia O’Keefe Plot for Kreuzer-Skarke

 S

Calabi−Yau Threefolds

KS
Toric Hypersurface

Elliptic Fibration

CICY
 Q
.

.

Horizontal χ = 2(h1,1 − h2,1) vs. Vertical h1,1 + h2,1
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The Geometric Origin of our Universe

Each CY3 (+ bundles, discrete symmetries) X gives a 4-D universe

The geometry (algebraic geometry, topology, differential geometry etc.) of X

determines the physical properties of the 4-D world

particles and interactions ∼ cohomology theory; masses ∼ metric; Yukawa ∼

Triple intersections/integral of forms over X

Ubi materia, ibi geometria

– Johannes Kepler (1571-1630)

Our Universe:


(1) probabilistic/anthropic?

(2) Sui generis/selection rule?

(3) one of multi-verse ?

cf. Exo-planet/Habitable Zone search

YANG-HUI HE (London/Oxford/Nankai) ML CY Torino, 2019 12 / 35



Triadophilia

Exact (MS)SM Particle Content from String Compactification

[Braun-YHH-Ovrut-Pantev, Bouchard-Cvetic-Donagi 2005] first exact MSSM

[Anderson-Gray-YHH-Lukas, 2007-] use alg./comp. algebraic geo & sift

Anderson-Gray-Lukas-Ovrut-Palti ∼ 200 in 1010 MSSM Stable Sum of Line Bundles

over CICYs (Oxford-Penn-Virginia 2012-)

Constantin-YHH-Lukas ’19: 1023 exact MSSMs (by extrapolation on above set)?
A Special Corner

[New Scientist, Jan, 5, 2008 feature]

P. Candelas, X. de la Ossa, YHH,

and B. Szendroi

“Triadophilia: A Special Corner of the

Landscape” ATMP, 2008
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The Landscape Explosion

meanwhile . . . LANDSCAPE grew rapidly with

D-branes Polchinski 1995

M-Theory/G2 Witten, 1995

F-Theory/4-folds Katz-Morrison-Vafa, 1996

AdS/CFT Maldacena 1998 Alg Geo of AdS/CFT

Flux-compactification Kachru-Kallosh-Linde-Trivedi, 2003, . . .
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The Vacuum Degeneracy Problem

F-Theory12d

More

solutions

related by

dualities

Fig. modified from

https://www.

physics.uu.se/

String theory trades one hard-problem [quantization of gravity] by another

[looking for the right compactification] (in many ways a richer and more

interesting problem)

KKLT 2003, Douglas, Denef 2005 - 6 at least 10500 possibilities
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SUMMARY: Algorithms and Datasets in String Theory

Growing databases and algorithms (many motivated by string theory): e.g.,

Singular, Macaulay2, GAP, SAGE, Bertini, grdb, etc; “Periodic table of shapes Project” classify Fanos

Archetypical Problems

Classify configurations (typically integer matrices: polyotope, adjacency, . . . )

Compute geometrical quantity algorithmically

toric ; combinatorics;

quotient singularities ; rep. finite groups;

generically ; ideals in polynomial rings;

Numerical geometry (homotopy continuation);

Cohomolgy (spectral sequences, Adjunction, Euler sequences)

Typical Problem in String Theory/Algebraic Geometry:

INPUT

integer tensor −→
OUTPUT

integer
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Where we stand . . .

The Good Last 10-15 years: several international groups have bitten the bullet

Oxford, London, Vienna, Blacksburg, Boston, Johannesburg, Munich, . . . computed

many geometrical/physical quantities and compiled them into

various databases Landscape Data (109∼10 entries typically)

The Bad Generic computation HARD: dual cone algorithm (exponential),

triangulation (exponential), Gröbner basis (double-exponential)

. . . e.g., how to construct stable bundles over the � 473 million KS

CY3? Sifting through for SM computationally impossible . . .

The ??? Borrow new techniques from “Big Data” revolution
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A Wild Question

Typical Problem in String Theory/Algebraic Geometry:

INPUT

integer tensor −→
OUTPUT

integer

Q: Can (classes of problems in computational) Algebraic Geometry be

“learned” by AI ? , i.e., can we “machine-learn the landscape?”

[YHH 1706.02714] Deep-Learning the Landscape, PLB 774, 2017:

Experimentally, it seems to be the case for many situations

2017

YHH (June), Seong-Krefl (June), Ruehle (June),

Carifio-Halverson-Krioukov-Nelson (July)
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A Prototypical Question

Hand-writing Recognition, e.g., my 0 to 9 is different from yours:

How to set up a bijection that takes these to {1, 2, . . . , 9, 0}? Find a clever

Morse function? Compute persistent homology? Find topological invariants?

ALL are inefficient and too sensitive to variation.

What does your iPhone/tablet do? What does Google do? Machine-Learn

Take large sample, take a few hundred thousand (e.g. NIST database)

. . .

ML in 1 min
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NN Doesn’t Care/Know about Algebraic Geometry

Hodge Number of a Complete Intersection CY is the association rule, e.g.

X =



1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 0 2 0

0 1 1 0 0 0 0 1

1 0 0 0 0 1 1 0

0 0 0 1 1 0 0 1

 , h1,1(X) = 8 ; −→ 8

CICY is 12× 15 integer matrix with entries ∈ [0, 5] is simply represented as a

12× 15 pixel image of 6 colours Proper Way

Cross-Validation:


- Take samples of X → h1,1

- train a NN, or SVM

- Validation on unseen X → h1,1
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Deep-Learning Algebraic Geometry

YHH ’17 Bull-YHH-Jejjala-Mishra ’18:

0.2 0.4 0.6 0.8
Fraction of data used for training

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Hodge Number - Validation Learning Curves

SVM Classifier Validation Accuracy
Neural Net Regressor, Validation Accuracy
Neural Net Classifier, Validation Accuracy

Learning Hodge Number

h1,1 ∈ [0, 19] so can set up 20-

channel NN classifer, regressor, as

well as SVM,

bypass exact sequences

YHH-SJ Lee’19: Distinguishing Elliptic Fibrations in CY3

20 40 60 80 100
Training %0.5

0.6

0.7

0.8

0.9

1.0
Accuracy

Matthews ϕ

Precision

bypass Oguiso-Kollar-Wilson

Theorem/Conjecture

(learning curves for precision and Matthews φ)
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More Success Stories in Algebraic Geometry

Ruehle ’17: genetic algorithm for bundle cohomology

Brodie-Constantin-Lukas ’19: EXACT formulae for line-bundle coho /

complex surfaces Interpolation vs Extrapolation ; Conjecture Formulation

Ashmore-YHH-Ovrut ’19: ML Calabi-Yau metric:

No known explicit Ricci-Flat Kähler metric ( except Tn) (Yau’s ’86 proof

non-constructive); Donaldson [’01-05] relatively fast method of numerical

(balanced) such metrics

ML improves it to 10-100 times faster with equal/better accuracy (NB.

checking Ricci-flat is easy)

RMK: Alg Geo / C amenable to ML: core computations (Grobner bases,

syzygies, long exact sequences, etc) ∼ integer (co-)kernel of matrices.
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Why stop at string/geometry?

[YHH-MH. Kim 1905.02263] Learning Algebraic Structures

When is a Latin Square (Sudoku) the Cayley (multiplication) table of a finite

group? (rmk: there is a known quadrangle-thm to test this) NN/SVM find to 94.9%

(φ = 0.90) at 25-75 cross-validation.

Can one look at the Cayley table and recognize a finite simple group?

Out[32]=

0.05 0.10 0.15 0.20
Training %0.80

0.85

0.90

0.95

1.00
Accuracy

Precision (% agreed)
Matthews Phi

bypass Sylow and Noether Thm

rmk: can do it via character-table

T , but getting T not trivial

SVM: space of finite-groups

(point-cloud of Cayley tables), ?∃

hypersurface separating

simple/non-simple?
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Why stop at the mathematics/physics?

[YHH-Jejjala-Nelson ] “hep-th” 1807.00735

Word2Vec: [Mikolov et al., ’13] NN which maps words in sentences to a

vector space by context (much better than word-frequency, quickly adopted

by Google); maximize (partition function) over all words with sliding window

(W1,2 weights of 2 layers, Cα window size, D # windows )

Z(W1,W2) :=
1

|D|

|D|∑
α=1

log

Cα∏
c=1

exp([~xc]
T ·W1 ·W2)

V∑
j=1

exp([~xc]T ·W1 ·W2)

We downloaded all ∼ 106 titles of hep-th, hep-ph, gr-qc, math-ph, hep-lat

from ArXiv since the beginning (1989) till end of 2017 Word Cloud

(rmk: Ginzparg has been doing a version of linguistic ML on ArXiv)

(rmk: abs and full texts in future)
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Subfields on ArXiv has own linguistic particulars

Linear Syntactical Identities

bosonic + string-theory = open-string

holography + quantum + string + ads = extremal-black-hole

string-theory + calabi-yau = m-theory + g2

space + black-hole = geometry + gravity . . .

binary classification (Word2Vec + SVM) of formal (hep-th, math-ph, gr-qc)

vs phenomenological (hep-ph, hep-lat) : 87.1% accuracy (5-fold classification

65.1% accuracy). ArXiv classifications

Cf. Tshitoyan et al., “Unsupervised word embeddings capture latent

knowledge from materials science literature”, Nature July, 2019: 3.3. million

materials-science abstracts; uncovers structure of periodic table, predicts discoveries of new

thermoelectric materials years in advance, and suggests as-yet unknown materials
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Summary and Outlook

PHYSICS Use AI (Neural Networks, SVMs, Regressor . . . ) as

1. Classifier deep-learn and categorize landscape data

2. Predictor estimate results beyond computational power

MATHS Not solving NP-hard problems, but stochastically bypassing

the expensive steps of long sequence-chasing, Gröbner bases,

dual cones/combinatorics

YHH ’17: (tried predicting primes with NN); Alessandretti,

Baronchelli, YHH, ’19: (tried ML on BSD);

Hierarchy of Difficulty ML struggles with:

numerical < algebraic geometry over C <

combinatorics/algebra < number theory
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GRAZIE

Boris Zilber [Merton Professor of Logic,

Oxford]: “you’ve managed syntax

without semantics. . . ”

Try your favourite problem and see

2017:

First non-human citizen (2017, Saudi Arabia)

First non-human with UN title (2017)

First String Data Conference (2017)
Sophia (Hanson Robotics, HK)
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An Analogy: R + i ∼ QFT + SUSY

Do Complex Numbers exist?

Function Theory and Geometry MUCH BETTER behaved over C than over R

Theorem [Fundamental]: C is algebraic closure of R

QFT much better behaved with SUSY

Theorem [Coleman-Mandula/Haag-Lopuszanski-Sohnius]: Nontrivial

extension of Poincaré/Gauge Theory-Lie is anticommutator

Working with QFTs with SUSY is like doing algebra/geometry over C

C ' R[i] ∼ (SO(1, 3) o L[ , ]) o L{ , } ' GSUSY

For us, SUSY ; Kähler manifolds Back to Compactification
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CICYs

M =


n1 q11 q21 . . . qK1

n2 q12 q22 . . . qK2
.
.
.

.

.

.
.
.
.

. . .
.
.
.

nm q1m q2m . . . qKm


m×K

− Complete Intersection Calabi-Yau (CICY) 3-folds

− K eqns of multi-degree qij ∈ Z≥0

embedded in Pn1 × . . .× Pnm

− c1(X) = 0 ;
K∑
j=1

qjr = nr + 1

− MT also CICY

The Quintic Q = [4|5]1,101
−200 (or simply [5]);

CICYs Central to string pheno in the 1st decade [Distler, Greene, Ross, et al.]

E6 GUTS unfavoured; Many exotics: e.g. 6 entire anti-generations

Back to CICYs



AdS/CFT as a Quiver Rep/Moduli Variety Corr.

a 20-year prog. joint with A. Hanany, S. Franco, B. Feng, et al.

U(N)

N D3−Branes

World−Volume = 

Quiver Gauge Theory

CY3 Cone

Sasaki−Einstein 5−fold

Toric

Singularities

Generic

Orbifolds

del Pezzo

Abelian

Orbifolds

Local CY3

C

C
3.

.

D-Brane Gauge Theory

(SCFT encoded as quiver)

←→

Vacuum Space as affine Variety

(N = 4 SYM)

(
X

YZ

,W = Tr([x, y], z)

)
←→ C3 = Cone(S5) [Maldacena]

THM [(P) Feng, Franco, Hanany, YHH, Kennaway, Martelli, Mekareeya, Seong, Sparks, Vafa, Vegh, Yamazaki, Zaffaroni . . .

(M) R. Böckland, N. Broomhead, A. Craw, A. King, G. Musiker, K. Ueda . . . ] (coherent component of)

representation variety of a quiver is toric CY3 iff quiver + superpotential

graph dual to a bipartite graph on T 2 Back to Landscape

combinatorial data/lattice polytopes ←→ gauge thy data as quivers/graphs
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A Single Neuron: The Perceptron

began in 1957 (!!) in early AI experiments (using CdS photo-cells)

DEF: Imitates a neuron: activates upon certain inputs, so define

Activation Function f(zi) for input tensor zi for some multi-index i;

consider: f(wizi + b) with wi weights and b bias/off-set;

typically, f(z) is sigmoid, Tanh, etc.

Given training data: D = {(x(j)
i , d(j)} with input xi and known output d(j),

minimize

SD =
∑
j

(
f(
∑
i

wix
(j)
i + b)− d(j)

)2

to find optimal wi and b ; “learning”, then check against Validation Data

Essentially (non-linear) regression
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The Neural Network: network of neurons ; the “brain”

DEF: a connected graph, each node is a perceptron (Implemented on

Mathematica 11.1 + / TensorFlow-Keras on Python)

1 adjustable weights/bias;

2 distinguished nodes: 1 set for input and 1 for output;

3 iterated training rounds.

Simple case: forward directed only,

called multilayer perceptron

others: e.g., decision trees, support-vector machines (SVM), etc

Essentially how brain learns complex tasks; apply to our Landscape Data

Back to Landscape
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Computing Hodge Numbers: Sketch

Recall Hodge decomposition Hp,q(X) ' Hq(X,∧pT ?X) ;

H1,1(X) = H1(X,T ?X), H2,1(X) ' H1,2 = H2(X,T ?X) ' H1(X,TX)

Euler Sequence for subvariety X ⊂ A is short exact:

0→ TX → TM |X → NX → 0

Induces long exact sequence in cohomology:

0 → ���
���:

0

H0(X,TX) → H0(X,TA|X) → H0(X,NX) →

→ H1(X,TX)
d→ H1(X,TA|X) → H1(X,NX) →

→ H2(X,TX) → . . .

Need to compute Rk(d), cohomology and Hi(X,TA|X) (Cf. Hübsch)

Back to ML
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ArXiv Word-Clouds

quantum
black-hole

model

theory

gravity
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