Universes as Bigdata:

Superstrings, Calabi-Yau Manifolds \& Machine-Learning

YANG-HUI HE

Dept of Mathematics, City, University of London
Merton College, University of Oxford
School of Physics, NanKai University
Università di Torino, Nov, 2019

Superstring Theory $9+1 \mathrm{~d}$

1984:

- Heterotic string [Gross-Harvey-Martinec-Rohm]: $E_{8} \times E_{8}$ or $S O(32), 1984$ - 6
- String Phenomenology [Candelas-Horowitz-Strominger-Witten]: 1986
- E_{8} accommodates SM

$$
S U(3) \times S U(2) \times U(1) \subset S U(5) \subset S O(10) \subset E_{6} \subset E_{8}
$$

- 6 extra dimensions is some 6-dimensional manifold X
(1) not just a real 6-manifold but a complex 3-fold X
(2) X is furthermore Kähler $\left(g_{\alpha \bar{\beta}}=\partial_{\alpha} \bar{\partial}_{\bar{\beta}} K\right)$ Why susv?
(3) X is Ricci flat (vacuum Einstein equations)
(4) Rmk: there are other classes of solutions (more later...) but $1,2,3$ simplest
- What are such manifolds? Just so happens that mathematicians were independently thinking of the same problem

1984:

- Heterotic string [Gross-Harvey-Martinec-Rohm]: $E_{8} \times E_{8}$ or $S O(32), 1984$ - 6
- String Phenomenology [Candelas-Horowitz-Strominger-Witten]: 1986
- E_{8} accommodates SM

$$
S U(3) \times S U(2) \times U(1) \subset S U(5) \subset S O(10) \subset E_{6} \subset E_{8}
$$

- 6 extra dimensions is some 6-dimensional manifold X
(1) not just a real 6-manifold but a complex 3-fold X
(2) X is furthermore Kähler $\left(g_{\alpha \bar{\beta}}=\partial_{\alpha} \bar{\partial}_{\bar{\beta}} K\right)$
(3) X is Ricci flat (vacuum Einstein equations)
(4) Rmk: there are other classes of solutions (more later...) but 1,2,3 simplest
- What are such manifolds? Just so happens that mathematicians were independently thinking of the same problem

A Classic Problem in Mathematics

- Euler, Gauss, Riemann $\Sigma: \operatorname{dim}_{\mathbb{R}}=2$, i.e., $\operatorname{dim}_{\mathbb{C}}=1$ (in fact Kähler)
- Trichtomy classification of (compact orientable) surfaces [Riemann surfaces/complex algebraic curves] Σ

0			
$g(\Sigma)=0$	$g(\Sigma)=1$	$\chi(\Sigma)>1$	
$\chi(\Sigma)=2$	$\chi(\Sigma)=0$		
Spherical	Ricci-Flat	Hyperbolic	
+ curvature	0 curvature	- curvature	

Euler number $\chi(\Sigma)$, genus $g(\Sigma)$

Classical Results for Riemann Surface Σ

$\chi(\Sigma)=2-2 g(\Sigma)=$	$=\left[c_{1}(\Sigma)\right] \cdot[\Sigma]=$	$=\frac{1}{2 \pi} \int_{\Sigma} R=$	$=\sum_{i=0}^{2}(-1)^{i} h^{i}(\Sigma)$
Topology	Algebraic Geometry	Differential Geometry	Index Theorem $($ co-)Homology
Invariants	Characteristic classes	Curvature	Betti Numbers

- First Chern Class $c_{1}(\Sigma)$
- Rank of (co-)homology group (Betti Number) $h^{i}(\Sigma)$
- Complexifies (Künneth) $h^{i}=\sum_{j+k=i} h^{j, k}$, Hodge Number $h^{j, k}$

Calabi-Yau

- $\operatorname{dim}_{\mathbb{C}}>1$ extremely complicated (high-dim geometry hard: cf. Poincaré Conjecture/Perelman Thm/Thurston-Hamilton Programme)
- Luckily, for our class of Kähler complex manifolds:
- CONJECTURE [E. Calabi, 1954, 1957]: M compact Kähler manifold (g, ω)
and $\left([R]=\left[c_{1}(M)\right]\right)_{H^{1,1}(M)}$.
Then $\exists!(\tilde{g}, \tilde{\omega})$ such that $([\omega]=[\tilde{\omega}])_{H^{2}(M ; \mathbb{R})}$ and $\operatorname{Ricci}(\tilde{\omega})=R$.
Rmk: $c_{1}(M)=0 \Leftrightarrow$ Ricci-flat (rmk: Ricci-flat familiar in GR long before strings)
- THEOREM [S-T Yau, 1977-8; Fields 1982] Existence Proof
- Calabi-Yau: Kähler and Ricci-flat (Strominger \& Yau were neighbours at IAS)

Calabi-Yau

- $\operatorname{dim}_{\mathbb{C}}>1$ extremely complicated (high-dim geometry hard: cf. Poincaré Conjecture/Perelman Thm/Thurston-Hamilton Programme)
- Luckily, for our class of Kähler complex manifolds:
- CONJECTURE [E. Calabi, 1954, 1957]: M compact Kähler manifold (g, ω)
and $\left([R]=\left[c_{1}(M)\right]\right)_{H^{1,1}(M)}$.
Then $\exists!(\tilde{g}, \tilde{\omega})$ such that $([\omega]=[\tilde{\omega}])_{H^{2}(M ; \mathbb{R})}$ and $\operatorname{Ricci}(\tilde{\omega})=R$.
Rmk: $c_{1}(M)=0 \Leftrightarrow$ Ricci-flat (rmk: Ricci-flat familiar in GR long before strings)
- THEOREM [S-T Yau, 1977-8; Fields 1982] Existence Proof
- Calabi-Yau: Kähler and Ricci-flat (Strominger \& Yau were neighbours at IAS)

Calabi-Yau

- $\operatorname{dim}_{\mathbb{C}}>1$ extremely complicated (high-dim geometry hard: cf. Poincaré Conjecture/Perelman Thm/Thurston-Hamilton Programme)
- Luckily, for our class of Kähler complex manifolds:
- CONJECTURE [E. Calabi, 1954, 1957]: M compact Kähler manifold (g, ω) and $\left([R]=\left[c_{1}(M)\right]\right)_{H^{1,1}(M)}$.
Then $\exists!(\tilde{g}, \tilde{\omega})$ such that $([\omega]=[\tilde{\omega}])_{H^{2}(M ; \mathbb{R})}$ and $\operatorname{Ricci}(\tilde{\omega})=R$.
Rmk: $c_{1}(M)=0 \Leftrightarrow$ Ricci-flat (rmk: Ricci-flat familiar in GR long before strings)
- THEOREM [S-T Yau, 1977-8; Fields 1982] Existence Proof
- Calabi-Yau: Kähler and Ricci-flat (Strominger \& Yau were neighbours at IAS)

Explicit Examples of Calabi-Yau Spaces

An interesting sequence: 1,2, ??? ...

$$
\begin{array}{ll}
\operatorname{dim}_{\mathbb{C}}=1 & \text { Torus } T^{2}=S^{1} \times S^{1} \\
& \text { QFT in } 10-2=8 d \\
& \begin{array}{ll}
\text { (1) 4-Torus } T^{4}=S^{1} \times S^{1} \times S^{1} \times S^{1} \\
\operatorname{dim}_{\mathbb{C}}=2 & \\
& \text { (2) K3 surface } \\
& \text { QFT in } 10-4=6 d
\end{array}
\end{array}
$$

Unclassified ???

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{C}}=3 & \text { (Yau's Conjecture: Finite Number) } \\
& \text { Desired QFT in } 10-6=4 d
\end{aligned}
$$

The Inevitability of Algebraic Geometry

- How to construct CY3? Realize as vanishing locus of polynomials, Algebraic Geometry e.g., $\left\{(p, q) \mid p^{2}+q^{2}-1=0\right\} \subset \mathbb{R}^{2}$ is a circle (1-real dimension)
- Complexify and Projectivize (Projective algebraic variety)
- Cubic equation in $\mathbb{C P}^{2}$: e.g. $\mathrm{CY} 1=T^{2}\left\{(x, y, z) \mid x^{3}+y^{3}+z^{3}=0\right\} \subset \mathbb{C P}^{2}$ (elliptic curve); $\operatorname{dim}_{\mathbb{C}}=2-1=1$
- TMH: Homogeneous Eq in $\mathbb{C P}^{n}$, degree $=n+1$ is Calabi-Yau of $\operatorname{dim}_{\mathbb{C}}=n-1$
- An Early Physical Challenge to Algebraic Geometry
- Particle content in [CHSW]

Generation $\quad h^{1}(X, T X)=h_{\bar{\partial}}^{2,1}(X) \quad$ Net-gen: $\chi=2\left(h^{1,1}-h^{2,1}\right)$
Anti-Generation $\left.\quad h^{1}\left(X, T X^{*}\right)=h_{\frac{1}{\partial}}^{1,1}(X)\right\}=$ Euler Number (X)

- 1986 Question: Are there Calabi-Yau threefolds with $\chi= \pm 6$?

The First Data-sets in Mathematical Physics/Geometry

- [Candelas-A. He-Hübsch-Lutken-Schimmrigk-Berglund] (1986-1990)
- CICYs (complete intersection CYs) multi-deg polys in products of $\mathbb{C P}^{n_{i}}$
- Problem: classify all configuration matrices; employed the best computers at the time (CERN supercomputer); q.v. magnetic tape and dot-matrix printout in Philip's office
- 7890 matrices, 266 Hodge pairs $\left(h^{1,1}, h^{2,1}\right)$, 70 Euler $\chi \in[-200,0]$
- [Candelas-Lynker-Schimmrigk, 1990]
- Hypersurfaces in Weighted P4
- 7555 inequivalent 5 -vectors $w_{i}, 2780$ Hodge pairs, $\chi \in[-960,960]$
- [Kreuzer-Skarke, mid-1990s - 2000]
- Hypersurfaces in (Reflexive, Gorenstein Fano) Toric 4-folds
- 6-month running time on dual Pentium SGI machine
- at least 473,800,776, with 30,108 distinct Hodge pairs, $\chi \in[-960,960]$

Technically, Moses

The age of data science in mathematical physics/string theory not as recent as you might think
of course, experimentals physics had been decades ahead in data-science/machine-learning

was the first person with a tablet downloading data from the cloud

The Compact CY3 Landscape

cf. YHH, The Calabi-Yau Landscape: from Geometry, to Physics, to
Machine-Learning, 1812.02893, Springer, to appear, 2019/20

- $\sim 10^{10}$ data-points (and growing, still mined by many international collabs:

London/Oxford, Vienna, Northeastern, Jo'burg, Munich, ,...)
a Georgia O'Keefe Plot for Kreuzer-Skarke

The Geometric Origin of our Universe

- Each CY3 (+ bundles, discrete symmetries) X gives a 4-D universe
- The geometry (algebraic geometry, topology, differential geometry etc.) of X determines the physical properties of the 4-D world
- particles and interactions \sim cohomology theory; masses \sim metric; Yukawa \sim Triple intersections/integral of forms over X

Ubi materia, ibi geometria

- Johannes Kepler (1571-1630)
- Our Universe:
(2) Sui generis/selection rule?
(3) one of multi-verse ?
cf. Exo-planet/Habitable Zone search

Triadophilia

Exact (MS)SM Particle Content from String Compactification

- [Braun-YHH-Ovrut-Pantev, Bouchard-Cvetic-Donagi 2005] first exact MSSM
- [Anderson-Gray-YHH-Lukas, 2007-] use alg./comp. algebraic geo \& sift
- Anderson-Gray-Lukas-Ovrut-Palti ~ 200 in 10^{10} MSSM Stable Sum of Line Bundles over CICYs (Oxford-Penn-Virginia 2012-)

Constantin-YHH-Lukas '19: 10^{23} exact MSSMs (by extrapolation on above set)?
 A Special Corner
[New Scientist, Jan, 5, 2008 feature]
P. Candelas, X. de la Ossa, YHH, and B. Szendroi
"Triadophilia: A Special Corner of the Landscape" ATMP, 2008

The Landscape Explosion

meanwhile ... LANDSCAPE grew rapidly with

- D-branes Polchinski 1995
- M-Theory/ G_{2} Witten, 1995
- F-Theory/4-folds Katz-Morrison-Vafa, 1996
- AdS/CFT Maldacena 1998 AIE Geo of AdS/CFT
- Flux-compactification Kachru-Kallosh-Linde-Trivedi, 2003, ...

The Vacuum Degeneracy Problem

- String theory trades one hard-problem [quantization of gravity] by another [looking for the right compactification] (in many ways a richer and more interesting problem)
- KKLT 2003, Douglas, Denef 2005-6 at least 10^{500} possibilities

SUMMARY: Algorithms and Datasets in String Theory

- Growing databases and algorithms (many motivated by string theory): e.g., Singular, Macaulay2, GAP, SAGE, Bertini, grdb, etc; "Periodic table of shapes Project" classify Fanos
- Archetypical Problems
- Classify configurations (typically integer matrices: polyotope, adjacency, ...)
- Compute geometrical quantity algorithmically
- toric \sim combinatorics;
- quotient singularities \leadsto rep. finite groups;
- generically \leadsto ideals in polynomial rings;
- Numerical geometry (homotopy continuation);
- Cohomolgy (spectral sequences, Adjunction, Euler sequences)
- Typical Problem in String Theory/Algebraic Geometry:
$\stackrel{\text { INPUT }}{\text { integer tensor }} \longrightarrow$ integer

Where we stand ...

The Good Last 10-15 years: several international groups have bitten the bullet Oxford, London, Vienna, Blacksburg, Boston, Johannesburg, Munich, ... computed many geometrical/physical quantities and compiled them into various databases Landscape Data ($10^{9 \sim 10}$ entries typically)

The Bad Generic computation HARD: dual cone algorithm (exponential), triangulation (exponential), Gröbner basis (double-exponential)
...e.g., how to construct stable bundles over the $\gg 473$ million KS
CY3? Sifting through for SM computationally impossible ...
The ??? Borrow new techniques from "Big Data" revolution

A Wild Question

- Typical Problem in String Theory/Algebraic Geometry:

- Q: Can (classes of problems in computational) Algebraic Geometry be "learned" by AI ? , i.e., can we "machine-learn the landscape?"
- [YHH 1706.02714] Deep-Learning the Landscape, PLB 774, 2017:

Experimentally, it seems to be the case for many situations

- 2017

YHH (June), Seong-Krefl (June), Ruehle (June),
Carifio-Halverson-Krioukov-Nelson (July)

A Prototypical Question

- Hand-writing Recognition, e.g., my 0 to 9 is different from yours:

$$
1234567890
$$

- How to set up a bijection that takes these to $\{1,2, \ldots, 9,0\}$? Find a clever Morse function? Compute persistent homology? Find topological invariants? ALL are inefficient and too sensitive to variation.
- What does your iPhone/tablet do? What does Google do? Machine-Learn
- Take large sample, take a few hundred thousand (e.g. NIST database)

$$
6 \rightarrow 6,8 \rightarrow 8,2 \rightarrow 2,4 \rightarrow 4,8 \rightarrow 8,7 \rightarrow 7,8 \rightarrow 8,
$$

$$
0 \rightarrow 0,4 \rightarrow 4,2 \rightarrow 2,5 \rightarrow 5,6 \rightarrow 6,3 \rightarrow 3,2 \rightarrow 2,
$$

NN Doesn't Care/Know about Algebraic Geometry

- Hodge Number of a Complete Intersection CY is the association rule, e.g.

CICY is 12×15 integer matrix with entries $\in[0,5]$ is simply represented as a 12×15 pixel image of 6 colours

```
Proper Way
```

- Cross-Validation:
- Take samples of $X \rightarrow h^{1,1}$
- train a NN, or SVM
- Validation on unseen $X \rightarrow h^{1,1}$

Deep-Learning Algebraic Geometry

- YHH '17 Bull-YHH-Jejjala-Mishra '18:

Learning Hodge Number
$h^{1,1} \in[0,19]$ so can set up 20channel NN classifer, regressor, as well as SVM, bypass exact sequences

- YHH-SJ Lee'19: Distinguishing Elliptic Fibrations in CY3

More Success Stories in Algebraic Geometry

- Ruehle '17: genetic algorithm for bundle cohomology
- Brodie-Constantin-Lukas '19: EXACT formulae for line-bundle coho / complex surfaces Interpolation vs Extrapolation \leadsto Conjecture Formulation
- Ashmore-YHH-Ovrut '19: ML Calabi-Yau metric:
- No known explicit Ricci-Flat Kähler metric (except T^{n}) (Yau's '86 proof non-constructive); Donaldson ['01-05] relatively fast method of numerical (balanced) such metrics
- ML improves it to 10-100 times faster with equal/better accuracy (NB. checking Ricci-flat is easy)
- RMK: Alg Geo / \mathbb{C} amenable to ML: core computations (Grobner bases, syzygies, long exact sequences, etc) ~ integer (co-)kernel of matrices.

Why stop at string/geometry?

[YHH-MH. Kim 1905.02263] Learning Algebraic Structures

- When is a Latin Square (Sudoku) the Cayley (multiplication) table of a finite group? (rmk: there is a known quadrangle-thm to test this) NN/SVM find to 94.9% ($\phi=0.90$) at 25-75 cross-validation.
- Can one look at the Cayley table and recognize a finite simple group?
- bypass Sylow and Noether Thm

- rmk: can do it via character-table T, but getting T not trivial
- SVM: space of finite-groups (point-cloud of Cayley tables), ? \exists
hypersurface separating
simple/non-simple?

Why stop at the mathematics/physics?

[YHH-Jejjala-Nelson] "hep-th" 1807.00735

- Word2Vec: [Mikolov et al., '13] NN which maps words in sentences to a vector space by context (much better than word-frequency, quickly adopted by Google); maximize (partition function) over all words with sliding window ($W_{1,2}$ weights of 2 layers, C_{α} window size, D \# windows)

$$
Z\left(W_{1}, W_{2}\right):=\frac{1}{|D|} \sum_{\alpha=1}^{|D|} \log \prod_{c=1}^{C_{\alpha}} \frac{\exp \left(\left[\vec{x}_{c}\right]^{T} \cdot W_{1} \cdot W_{2}\right)}{\sum_{j=1}^{V} \exp \left(\left[\vec{x}_{c}\right]^{T} \cdot W_{1} \cdot W_{2}\right)}
$$

- We downloaded all $\sim 10^{6}$ titles of hep-th, hep-ph, gr-qc, math-ph, hep-lat from ArXiv since the beginning (1989) till end of 2017 Word Clowd (rmk: Ginzparg has been doing a version of linguistic ML on ArXiv) (rmk: abs and full texts in future)

Subfields on ArXiv has own linguistic particulars

- Linear Syntactical Identities
bosonic + string-theory $=$ open-string
holography + quantum + string + ads $=$ extremal-black-hole
string-theory + calabi-yau $=m$-theory + g2
space + black-hole $=$ geometry + gravity \ldots
- binary classification (Word2Vec + SVM) of formal (hep-th, math-ph, gr-qc) vs phenomenological (hep-ph, hep-lat) : 87.1\% accuracy (5-fold classification 65.1\% accuracy).

ArXiv classifications

- Cf. Tshitoyan et al., "Unsupervised word embeddings capture latent knowledge from materials science literature", Nature July, 2019: 3.3. million materials-science abstracts; uncovers structure of periodic table, predicts discoveries of new thermoelectric materials years in advance, and suggests as-yet unknown materials

Summary and Outlook

PHYSICS • Use AI (Neural Networks, SVMs, Regressor ...) as

1. Classifier deep-learn and categorize landscape data
2. Predictor estimate results beyond computational power

MATHS - Not solving NP-hard problems, but stochastically bypassing the expensive steps of long sequence-chasing, Gröbner bases, dual cones/combinatorics

- YHH '17: (tried predicting primes with NN); Alessandretti, Baronchelli, YHH, '19: (tried ML on BSD);
- Hierarchy of Difficulty ML struggles with:
numerical $<$ algebraic geometry over $\mathbb{C}<$ combinatorics/algebra < number theory

GRAZIE

- Boris Zilber [Merton Professor of Logic, Oxford]: "you've managed syntax without semantics. .."
- Try your favourite problem and see
- 2017:

First non-human citizen (2017, Saudi Arabia)

First non-human with UN title (2017)
First String Data Conference (2017)

Sophia (Hanson Robotics, HK)

An Analogy: $\mathbb{R}+i \sim$ QFT + SUSY

- Do Complex Numbers exist?
- Function Theory and Geometry MUCH BETTER behaved over \mathbb{C} than over \mathbb{R}

Theorem [Fundamental]: \mathbb{C} is algebraic closure of \mathbb{R}

- QFT much better behaved with SUSY

Theorem [Coleman-Mandula/Haag-Lopuszanski-Sohnius]: Nontrivial extension of Poincaré/Gauge Theory-Lie is anticommutator

- Working with QFTs with SUSY is like doing algebra/geometry over \mathbb{C}

$$
\mathbb{C} \simeq \mathbb{R}[i] \sim\left(S O(1,3) \rtimes L_{[,]}\right) \rtimes L_{\{,\}} \simeq G_{S U S Y}
$$

- For us, SUSY \sim Kähler manifolds

CICYs

$M=\left[\begin{array}{c|cccc}n_{1} & q_{1}^{1} & q_{1}^{2} & \ldots & q_{1}^{K} \\ n_{2} & q_{2}^{1} & q_{2}^{2} & \ldots & q_{2}^{K} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n_{m} & q_{m}^{1} & q_{m}^{2} & \ldots & q_{m}^{K}\end{array}\right]_{m \times K} \quad \begin{aligned} & \text { Complete Intersection Calabi－Yau（CICY）3－folds } \\ & \\ & \\ & \\ & \end{aligned}$
－The Quintic $Q=[4 \mid 5]_{-200}^{1,101}$（or simply［5］）；
－CICYs Central to string pheno in the 1st decade［Distler，Greene，Ross，et al．］
E_{6} GUTS unfavoured；Many exotics：e．g． 6 entire anti－generations

AdS/CFT as a Quiver Rep/Moduli Variety Corr.

a 20 -year prog. joint with A. Hanany, S. Franco, B. Feng, et al.

D-Brane Gauge Theory (SCFT encoded as quiver)
\longleftrightarrow
Vacuum Space as affine Variety

- $(\mathcal{N}=4$ SYM $)\left(\bigodot_{z}^{x}, W=\operatorname{Tr}([x, y], z)\right) \longleftrightarrow \mathbb{C}^{3}=$ Cone $\left(S^{5}\right)$ [Maldacena]
- THM [(P) Feng, Franco, Hanany, YHH, Kennaway, Martelli, Mekareeya, Seong, Sparks, Vafa, Vegh, Yamazaki, Zaffaroni
(M) R. Böckland, N. Broomhead, A. Craw, A. King, G. Musiker, K. Ueda ...] (coherent component of) representation variety of a quiver is toric CY3 iff quiver + superpotential graph dual to a bipartite graph on T^{2}

```
Back to Landscape
```

combinatorial data/lattice polytopes \longleftrightarrow gauge thy data as quivers/graphs

A Single Neuron: The Perceptron

- began in 1957 (!!) in early AI experiments (using CdS photo-cells)
- DEF: Imitates a neuron: activates upon certain inputs, so define
- Activation Function $f\left(z_{i}\right)$ for input tensor z_{i} for some multi-index i;
- consider: $f\left(w_{i} z_{i}+b\right)$ with w_{i} weights and b bias/off-set;
- typically, $f(z)$ is sigmoid, Tanh, etc.
- Given training data: $D=\left\{\left(x_{i}^{(j)}, d^{(j)}\right\}\right.$ with input x_{i} and known output $d^{(j)}$, minimize

$$
S D=\sum_{j}\left(f\left(\sum_{i} w_{i} x_{i}^{(j)}+b\right)-d^{(j)}\right)^{2}
$$

to find optimal w_{i} and $b \leadsto$ "learning", then check against Validation Data

- Essentially (non-linear) regression

The Neural Network: network of neurons \sim the "brain"

- DEF: a connected graph, each node is a perceptron (Implemented on Mathematica $11.1+/$ TensorFlow-Keras on Python)
(1) adjustable weights/bias;
(2) distinguished nodes: 1 set for input and 1 for output;
(3) iterated training rounds.

Simple case: forward directed only, called multilayer perceptron

- others: e.g., decision trees, support-vector machines (SVM), etc
- Essentially how brain learns complex tasks; apply to our Landscape Data

Computing Hodge Numbers: Sketch

- Recall Hodge decomposition $H^{p, q}(X) \simeq H^{q}\left(X, \wedge^{p} T^{\star} X\right) \leadsto$

$$
H^{1,1}(X)=H^{1}\left(X, T_{X}^{\star}\right), \quad H^{2,1}(X) \simeq H^{1,2}=H^{2}\left(X, T_{X}^{\star}\right) \simeq H^{1}\left(X, T_{X}\right)
$$

- Euler Sequence for subvariety $X \subset A$ is short exact:

$$
\left.0 \rightarrow T_{X} \rightarrow T_{M}\right|_{X} \rightarrow N_{X} \rightarrow 0
$$

- Induces long exact sequence in cohomology:

$$
\begin{aligned}
& 0 \rightarrow \underline{H}^{0}\left(X, T_{X}\right)^{0} \rightarrow H^{0}\left(X,\left.T_{A}\right|_{X}\right) \rightarrow H^{0}\left(X, N_{X}\right) \rightarrow \\
& \rightarrow H^{1}\left(X, T_{X}\right) \xrightarrow{d} H^{1}\left(X,\left.T_{A}\right|_{X}\right) \rightarrow H^{1}\left(X, N_{X}\right) \rightarrow \\
& \rightarrow H^{2}\left(X, T_{X}\right) \quad \rightarrow \quad \ldots
\end{aligned}
$$

- Need to compute $\operatorname{Rk}(d)$, cohomology and $H^{i}\left(X,\left.T_{A}\right|_{X}\right)$ (Cf. Hübsch)

ArXiv Word-Clouds

dimension instanten nonabelian scarar-fietr ratalystic newpotential string-theory ${ }^{\text {cosmological }}$ spectrum yyans-mifts-theory symmetry brane fermion effectapproach ${ }^{\text {Sy }}$ and generalizedString cosmology action gravitational fft + gravitational qft geometry $\cap \bigcirc \mathrm{m}$ matrix-model group fifablack-holeandy spacentor an ampitude dynamics quantization general
correction SUSY -theory
field ${ }^{\text {exad }}$ inflation gauge-theory topological ${ }^{\text {solito }}$ classical duality spacetime representation vacmalization noncommutative interaction scalar universe tolography invariant matter

hep-th

[^0]bound function evolution relativistic form-factor state field hadronicelectroweak imptications dynamical chiral collision interaction potential spectrum string symmetry large physics production particle equation
 smhiggs vacuum processes gamma pv heavy \quad b \quad — theory meson © SUSy $\mathrm{SOM}_{\text {system }}^{\text {light }}$
spin approach Scattering gluon correction OO Scattering limit study M aSS
matter inflation constraint dynamics data
lattice neutrino-mass cosmological scalar property
nuciear effective search detemination mssm phase.

hep-ph

critical interaction finite-volume scattering correction simulation potential wilson-fermion method exact ${ }^{\text {two-dimensional form-factor landau-gauge s. scalar }}$ action operator gauge-theory chiral symmetry action operator approachfinite-temperature monopole flavor quark-mass vacuum 1 nonperturbative decay density
ising-model su(3) property improved abelian
gluon
field field scaling
study uark \bigcirc pion theory large yang-mills-theory $\left.\cap \cap O \mathrm{e}^{\text {2d }}\right|_{\text {baryon }} ^{\text {dynamics }}$ new spectrum matter $\bigcap \bigcirc O$ dynamics order dynamical lattice-gauge-theory quantum stat algorithm coupling phase-transition meson renormalization chemical-potential determination
effectivenucleon simulations transition expansion
discrete interaction relativistic stability metro integrable representation classical class topological waverandompotential,function lattice point structure ${ }^{\text {Symmetry }}$ application
 $\underset{\substack{\text { integral } \\ \text { complex }}}{\text { and }}$ ${ }_{\substack{\text { spin } \\ \text { sonimonergy } \\ \text { enroup }}}^{\text {gromentric }}$ geometric
problem relation scattering
spacetime spacetime
spectrumblaral
singular general field theorygeneralized ${ }_{\text {new }}^{\text {polynomials sumphes susy }}$ limitalgebraoperator dynamics fiow surface methodSolutionnnonlinear local
tinear boundary schrodinger-operator invariant finite
conformal theoremmanifold state effect

math-ph

Classifying Titles

Compare, + non-physics sections, non-science (Times), pseudo-science (viXra)

6: cond-mat, 7: q-fin, 8: stat, 9: q-bio, 10: Times of India Back to Main

[^0]: structure evolution constraint stabillty potentias modifind gravitational constraint stability potential nuarr relativistionantum-gravity neutron-star cosmic relativistic MOd elinflation symaty enorsolion 110 elinfationscran molographic general-relativity Aederalized
 entropy dace timespacetime $\begin{gathered}\text { approach } \\ \text { particle }\end{gathered}$ black=hole equationgravitytheorynew ${ }^{\text {perturbation }}$ COSmologydynamics dark-energy $q u a n t u m$ geometry modined gevitit quantumy cosmological-moses cosmological effect singularty Universe thempodymamis field dynamical
 vacuum rotating dark-matter SCalar-field mas
 mumse horizon conformal mattermetric elinstein

