Universes as Bigdata:

Superstrings, Calabi-Yau Manifolds & Machine-Learning

YANG-HUI HE

Dept of Mathematics, City, **University of London**Merton College, **University of Oxford**School of Physics, **NanKai University**

Università di Torino, Nov, 2019

Superstring Theory 9+1 d Unified theory of quantum gravity II. 6 small dim trapped on the Compactification gravitons 1. Reduce Dim: 10 = 6+4 2. Break SUSY Our world 3+1d SU(3)xSU(2)xU(1) SM + GR

I. 6 Large Dim

AdS/CFT

Brane World

Ouarks

Leptons

1984: $10 = 4 + 3 \times 2$

- Heterotic string [Gross-Harvey-Martinec-Rohm]: $E_8 \times E_8$ or SO(32), 1984 6
- String Phenomenology [Candelas-Horowitz-Strominger-Witten]: 1986
 - E₈ accommodates SM

$$SU(3) \times SU(2) \times U(1) \subset SU(5) \subset SO(10) \subset E_6 \subset E_8$$

- ullet 6 extra dimensions is some 6-dimensional manifold X
 - lacktriangledown not just a real 6-manifold but a complex 3-fold X
 - 2 X is furthermore Kähler $(g_{\alpha\bar{\beta}} = \partial_{\alpha}\bar{\partial}_{\bar{\beta}}K)$ Why SUSY?
 - 3 X is Ricci flat (vacuum Einstein equations)
 - Rmk: there are other classes of solutions (more later...) but 1,2,3 simplest
- What are such manifolds? Just so happens that mathematicians were independently thinking of the same problem

1984: $10 = 4 + 3 \times 2$

- Heterotic string [Gross-Harvey-Martinec-Rohm]: $E_8 \times E_8$ or SO(32), 1984 6
- String Phenomenology [Candelas-Horowitz-Strominger-Witten]: 1986
 - E₈ accommodates SM

$$SU(3) \times SU(2) \times U(1) \subset SU(5) \subset SO(10) \subset E_6 \subset E_8$$

- 6 extra dimensions is some 6-dimensional manifold X
 - lacktriangle not just a real 6-manifold but a complex 3-fold X
 - 2 X is furthermore Kähler $(g_{\alpha\bar{\beta}} = \partial_{\alpha}\bar{\partial}_{\bar{\beta}}K)$ Why SUSY?
 - 3 X is Ricci flat (vacuum Einstein equations)
 - Rmk: there are other classes of solutions (more later...) but 1,2,3 simplest
- What are such manifolds? Just so happens that mathematicians were independently thinking of the same problem

A Classic Problem in Mathematics

- Euler, Gauss, Riemann Σ : $\dim_{\mathbb{R}} = 2, i.e., \dim_{\mathbb{C}} = 1$ (in fact Kähler)
- \bullet Trichtomy classification of (compact orientable) surfaces [Riemann surfaces/complex algebraic curves] Σ

		<i>∞</i> & %							
$g(\Sigma) = 0$	$g(\Sigma) = 1$	$g(\Sigma) > 1$							
$\chi(\Sigma) = 2$	$\chi(\Sigma) = 0$	$\chi(\Sigma) < 0$							
Spherical	Ricci-Flat	Hyperbolic							
+ curvature	0 curvature	— curvature							

Euler number $\chi(\Sigma)$, genus $g(\Sigma)$

Classical Results for Riemann Surface Σ

$\chi(\Sigma) = 2 - 2g(\Sigma) =$	$= [c_1(\Sigma)] \cdot [\Sigma] =$	$=rac{1}{2\pi}\int_{\Sigma} R =$	$=\sum_{i=0}^{2}(-1)^{i}h^{i}(\Sigma)$		
Topology	Algebraic Geometry	Differential Geometry	Index Theorem (co-)Homology		
Invariants	Characteristic classes	Curvature	Betti Numbers		

- First Chern Class $c_1(\Sigma)$
- \bullet Rank of (co-)homology group (Betti Number) $h^i(\Sigma)$
- \bullet Complexifies (Künneth) $h^i = \sum\limits_{j+k=i} h^{j,k}$, Hodge Number $h^{j,k}$

Calabi-Yau

- $\dim_{\mathbb{C}} > 1$ extremely complicated (high-dim geometry hard: cf. Poincaré Conjecture/Perelman Thm/Thurston-Hamilton Programme)
- Luckily, for our class of Kähler complex manifolds:
- CONJECTURE [E. Calabi, 1954, 1957]: M compact Kähler manifold (g,ω) and $([R]=[c_1(M)])_{H^{1,1}(M)}.$ Then $\exists!(\tilde{g},\tilde{\omega})$ such that $([\omega]=[\tilde{\omega}])_{H^2(M:\mathbb{R})}$ and $Ricci(\tilde{\omega})=R.$

Rmk: $c_1(M)=0 \Leftrightarrow \mathsf{Ricci}$ -flat (rmk: Ricci-flat familiar in GR long before strings)

- THEOREM [S-T Yau, 1977-8; Fields 1982] Existence Proof
- Calabi-Yau: Kähler and Ricci-flat (Strominger & Yau were neighbours at IAS)

Calabi-Yau

- $\dim_{\mathbb{C}} > 1$ extremely complicated (high-dim geometry hard: cf. Poincaré Conjecture/Perelman Thm/Thurston-Hamilton Programme)
- Luckily, for our class of Kähler complex manifolds:
- CONJECTURE [E. Calabi, 1954, 1957]: M compact Kähler manifold (g,ω) and $([R]=[c_1(M)])_{H^{1,1}(M)}$.

Then $\exists ! (\tilde{g}, \tilde{\omega})$ such that $([\omega] = [\tilde{\omega}])_{H^2(M;\mathbb{R})}$ and $Ricci(\tilde{\omega}) = R$.

- Rmk: $c_1(M) = 0 \Leftrightarrow \text{Ricci-flat (rmk: Ricci-flat familiar in GR long before strings)}$
 - THEOREM [S-T Yau, 1977-8; Fields 1982] Existence Proof
 - Calabi-Yau: Kähler and Ricci-flat (Strominger & Yau were neighbours at IAS)

Calabi-Yau

- $\dim_{\mathbb{C}} > 1$ extremely complicated (high-dim geometry hard: cf. Poincaré Conjecture/Perelman Thm/Thurston-Hamilton Programme)
- Luckily, for our class of Kähler complex manifolds:
- CONJECTURE [E. Calabi, 1954, 1957]: M compact Kähler manifold (g,ω) and $([R]=[c_1(M)])_{H^{1,1}(M)}.$ Then $\exists! (\tilde{g},\tilde{\omega})$ such that $([\omega]=[\tilde{\omega}])_{H^2(M:\mathbb{R})}$ and $Ricci(\tilde{\omega})=R.$

Rmk: $c_1(M) = 0 \Leftrightarrow \text{Ricci-flat (rmk: Ricci-flat familiar in GR long before strings)}$

- THEOREM [S-T Yau, 1977-8; Fields 1982] Existence Proof
- Calabi-Yau: Kähler and Ricci-flat (Strominger & Yau were neighbours at IAS)

Explicit Examples of Calabi-Yau Spaces

An interesting sequence: 1,2, ??? ...

$$\dim_{\mathbb{C}} = 1$$
 Torus $T^2 = S^1 \times S^1$ QFT in $10 - 2 = 8d$

(1) 4-Torus
$$T^4 = S^1 \times S^1 \times S^1 \times S^1$$

$$\dim_{\mathbb{C}} = 2$$
 (2) K3 surface

$$\mathsf{QFT} \,\, \mathsf{in} \,\, 10-4=6d$$

Unclassified ???

 $\dim_{\mathbb{C}} = 3$ (Yau's Conjecture: Finite Number)

Desired QFT in
$$10-6=4d$$



The Inevitability of Algebraic Geometry

- How to construct CY3? Realize as vanishing locus of polynomials, Algebraic Geometry e.g., $\{(p,q)|p^2+q^2-1=0\}\subset\mathbb{R}^2$ is a circle (1-real dimension)
- Complexify and Projectivize (Projective algebraic variety)
 - Cubic equation in \mathbb{CP}^2 : e.g. CY1 = T^2 $\{(x,y,z)|x^3+y^3+z^3=0\}\subset \mathbb{CP}^2$ (elliptic curve); dim $\mathbb{C}=2-1=1$
 - ullet TMH: Homogeneous Eq in \mathbb{CP}^n , degree =n+1 is Calabi-Yau of $\dim_{\mathbb{C}}=n-1$
- An Early Physical Challenge to Algebraic Geometry
- 1986 Question: Are there Calabi-Yau threefolds with $\chi=\pm 6$?

The First Data-sets in Mathematical Physics/Geometry

- [Candelas-A. He-Hübsch-Lutken-Schimmrigk-Berglund] (1986-1990)
 - CICYs (complete intersection CYs) multi-deg polys in products of \mathbb{CP}^{n_i} (CICYs)

- Problem: classify all configuration matrices; employed the best computers at the time (CERN supercomputer); q.v. magnetic tape and dot-matrix printout in Philip's office
- 7890 matrices, 266 Hodge pairs $(h^{1,1}, h^{2,1})$, 70 Euler $\chi \in [-200, 0]$
- [Candelas-Lynker-Schimmrigk, 1990]
 - Hypersurfaces in Weighted P4
 - 7555 inequivalent 5-vectors w_i , 2780 Hodge pairs, $\chi \in [-960, 960]$
- [Kreuzer-Skarke, mid-1990s 2000]
 - Hypersurfaces in (Reflexive, Gorenstein Fano) Toric 4-folds
 - 6-month running time on dual Pentium SGI machine
 - at least 473,800,776, with 30,108 distinct Hodge pairs, $\chi \in [-960,960]$

Technically, Moses

was the first person with a tablet downloading data from the cloud The age of data science in mathematical physics/string theory not as recent as you might think

of course, experimentals physics had been decades ahead in data-science/machine-learning

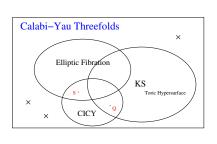
After 40 years of research by mathematicians and physicists

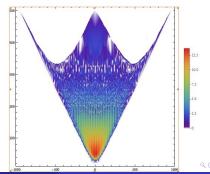
The Compact CY3 Landscape

cf. YHH, The Calabi-Yau Landscape: from Geometry, to Physics, to

Machine-Learning, 1812.02893, Springer, to appear, 2019/20

- $\bullet \sim 10^{10}$ data-points (and growing, still mined by many international collabs: London/Oxford, Vienna, Northeastern, Jo'burg, Munich, ,...)
 - a Georgia O'Keefe Plot for Kreuzer-Skarke





The Geometric Origin of our Universe

- Each CY3 (+ bundles, discrete symmetries) X gives a 4-D universe
 - ullet The geometry (algebraic geometry, topology, differential geometry etc.) of Xdetermines the physical properties of the 4-D world
 - ullet particles and interactions \sim cohomology theory; masses \sim metric; Yukawa \sim Triple intersections/integral of forms over X

Ubi materia, ibi geometria

- Johannes Kepler (1571-1630)

- Our Universe:

 (1) probabilistic/anthropic?
 (2) Sui generis/selection rule?
 (3) one of multi-verse?

 - cf. Exo-planet/Habitable Zone search

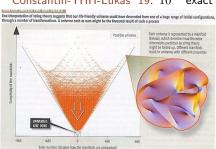
Triadophilia

Exact (MS)SM Particle Content from String Compactification

- [Braun-YHH-Ovrut-Pantev, Bouchard-Cvetic-Donagi 2005] first exact MSSM
- [Anderson-Gray-YHH-Lukas, 2007-] use alg./comp. algebraic geo & sift
- Anderson-Gray-Lukas-Ovrut-Palti ~ 200 in 10^{10} MSSM Stable Sum of Line Bundles over CICYs (Oxford-Penn-Virginia 2012-)

Constantin-YHH-Lukas '19: 10²³ exact MSSMs (by extrapolation on above set)?

A Special Corner



[New Scientist, Jan, 5, 2008 feature]

P. Candelas, X. de la Ossa, YHH, and B. Szendroi

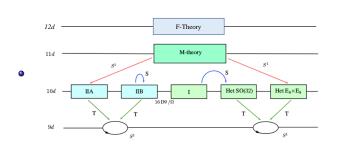
"Triadophilia: A Special Corner of the Landscape" ATMP, 2008

The Landscape Explosion

meanwhile ... LANDSCAPE grew rapidly with

- D-branes Polchinski 1995
- M-Theory/ G_2 Witten, 1995
- F-Theory/4-folds Katz-Morrison-Vafa, 1996
- AdS/CFT Maldacena 1998 Alg Geo of AdS/CFT
- Flux-compactification Kachru-Kallosh-Linde-Trivedi, 2003, ...

The Vacuum Degeneracy Problem



More solutions related by dualities

https://www.

Fig. modified from

physics.uu.se/

- String theory trades one hard-problem [quantization of gravity] by another [looking for the right compactification] (in many ways a richer and more interesting problem)
- KKLT 2003, Douglas, Denef 2005 6 at least 10⁵⁰⁰ possibilities

SUMMARY: Algorithms and Datasets in String Theory

- Growing databases and algorithms (many motivated by string theory): e.g.,
 - Singular, Macaulay2, GAP, SAGE, Bertini, grdb, etc; "Periodic table of shapes Project" classify Fanos
- Archetypical Problems
 - Classify configurations (typically integer matrices: polyotope, adjacency, ...)
 - Compute geometrical quantity algorithmically
 - toric → combinatorics;
 - quotient singularities → rep. finite groups;
 - generically → ideals in polynomial rings;
 - Numerical geometry (homotopy continuation);
 - Cohomolgy (spectral sequences, Adjunction, Euler sequences)
- Typical Problem in String Theory/Algebraic Geometry:

Where we stand ...

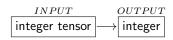
The Good Last 10-15 years: several international groups have bitten the bullet Oxford, London, Vienna, Blacksburg, Boston, Johannesburg, Munich, ... computed many geometrical/physical quantities and compiled them into various databases Landscape Data ($10^{9\sim10}$ entries typically) The Bad Generic computation HARD: dual cone algorithm (exponential), triangulation (exponential), Gröbner basis (double-exponential) \dots e.g., how to construct stable bundles over the $\gg 473$ million KS CY3? Sifting through for SM computationally impossible . . .

The ???

Borrow new techniques from "Big Data" revolution

A Wild Question

• Typical Problem in String Theory/Algebraic Geometry:



- Q: Can (classes of problems in computational) Algebraic Geometry be "learned" by Al?, i.e., can we "machine-learn the landscape?"
- [YHH 1706.02714] Deep-Learning the Landscape, PLB 774, 2017: Experimentally, it seems to be the case for many situations
- YHH (June), Seong-Krefl (June), Ruehle (June),
 Carifio-Halverson-Krioukov-Nelson (July)

2017

A Prototypical Question

• Hand-writing Recognition, e.g., my 0 to 9 is different from yours:

- How to set up a bijection that takes these to $\{1,2,\ldots,9,0\}$? Find a clever Morse function? Compute persistent homology? Find topological invariants? ALL are inefficient and too sensitive to variation.
- What does your iPhone/tablet do? What does Google do? Machine-Learn
 - Take large sample, take a few hundred thousand (e.g. NIST database)
 6 → 6, \$\mathcal{L} + 8, \$\mathcal{L} + 2, \$\mathcal{L} + 4, \$\mathcal{L} + 8, \$\mathcal{T} + 8, \$\mathcal{L} + 8,

$$0 \rightarrow 0, 4 \rightarrow 4, 2 \rightarrow 2, 5 \rightarrow 5, 6 \rightarrow 6, 3 \rightarrow 3, 2 \rightarrow 2,$$

19 / 35

NN Doesn't Care/Know about Algebraic Geometry

Hodge Number of a Complete Intersection CY is the association rule, e.g.

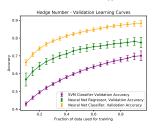
$$X = \begin{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}, \qquad h^{1,1}(X) = 8 \quad \rightsquigarrow$$

CICY is 12×15 integer matrix with entries $\in [0,5]$ is simply represented as a 12×15 pixel image of 6 colours Proper Way

- $\bullet \ \, {\sf Cross-Validation} \colon \left\{ \begin{array}{l} \text{- Take samples of } X \to h^{1,1} \\ \\ \text{- train a NN, or SVM} \\ \\ \text{- Validation on } \textit{unseen } X \to h^{1,1} \end{array} \right.$

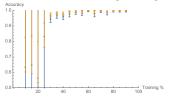
Deep-Learning Algebraic Geometry

• YHH '17 Bull-YHH-Jejjala-Mishra '18:



Learning Hodge Number $h^{1,1} \in [0,19]$ so can set up 20-channel NN classifer, regressor, as well as SVM, bypass exact sequences

YHH-SJ Lee'19: Distinguishing Elliptic Fibrations in CY3



bypass Oguiso-Kollar-Wilson Theorem/Conjecture (learning curves for precision and Matthews ϕ)

21/35

More Success Stories in Algebraic Geometry

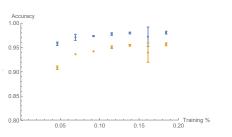
- Ruehle '17: genetic algorithm for bundle cohomology
- Brodie-Constantin-Lukas '19: EXACT formulae for line-bundle coho / complex surfaces Interpolation vs Extrapolation → Conjecture Formulation
- Ashmore-YHH-Ovrut '19: ML Calabi-Yau metric:
 - No known explicit Ricci-Flat Kähler metric (except T^n) (Yau's '86 proof non-constructive); Donaldson ['01-05] relatively fast method of *numerical* (balanced) such metrics
 - ML improves it to 10-100 times faster with equal/better accuracy (NB. checking Ricci-flat is easy)
- RMK: Alg Geo / C amenable to ML: core computations (Grobner bases, syzygies, long exact sequences, etc) ~ integer (co-)kernel of matrices.

ML CY

Why stop at string/geometry?

[YHH-MH. Kim 1905.02263] Learning Algebraic Structures

- When is a Latin Square (Sudoku) the Cayley (multiplication) table of a finite group? (rmk: there is a known quadrangle-thm to test this) NN/SVM find to 94.9% ($\phi=0.90$) at 25-75 cross-validation.
- Can one look at the Cayley table and recognize a finite simple group?



rmk: can do it via character-table
 T, but getting T not trivial

bypass Sylow and Noether Thm

 SVM: space of finite-groups (point-cloud of Cayley tables), ?∃ hypersurface separating simple/non-simple?

Why stop at the mathematics/physics?

[YHH-Jejjala-Nelson] "hep-th" 1807.00735

• Word2Vec: [Mikolov et al., '13] NN which maps words in sentences to a vector space **by context** (much better than word-frequency, quickly adopted by Google); maximize (partition function) over all words with sliding window $(W_{1,2} \text{ weights of 2 layers, } C_{\alpha} \text{ window size, } D \# \text{ windows })$

$$Z(W_1, W_2) := \frac{1}{|D|} \sum_{\alpha=1}^{|D|} \log \prod_{c=1}^{C_{\alpha}} \frac{\exp([\vec{x}_c]^T \cdot W_1 \cdot W_2)}{\sum\limits_{j=1}^{V} \exp([\vec{x}_c]^T \cdot W_1 \cdot W_2)}$$

• We downloaded all $\sim 10^6\,$ titles of hep-th, hep-ph, gr-qc, math-ph, hep-lat from ArXiv since the beginning (1989) till end of 2017 Word Cloud (rmk: Ginzparg has been doing a version of linguistic ML on ArXiv) (rmk: abs and full texts in future)

Subfields on ArXiv has own linguistic particulars

Linear Syntactical Identities

```
bosonic + string-theory = open-string
holography + quantum + string + ads = extremal-black-hole
string-theory + calabi-yau = m-theory + g2
space + black-hole = geometry + gravity . . .
```

- binary classification (Word2Vec + SVM) of formal (hep-th, math-ph, gr-qc)
 vs phenomenological (hep-ph, hep-lat): 87.1% accuracy (5-fold classification
 65.1% accuracy).
- Cf. Tshitoyan et al., "Unsupervised word embeddings capture latent knowledge from materials science literature", Nature July, 2019: 3.3. million materials-science abstracts; uncovers structure of periodic table, predicts discoveries of new thermoelectric materials years in advance, and suggests as-yet unknown materials

Summary and Outlook

PHYSICS

- Use AI (Neural Networks, SVMs, Regressor . . .) as
 - 1. Classifier deep-learn and categorize landscape data
 - 2. Predictor estimate results beyond computational power

MATHS

- Not solving NP-hard problems, but stochastically bypassing the expensive steps of long sequence-chasing, Gröbner bases, dual cones/combinatorics
- YHH '17: (tried predicting primes with NN); Alessandretti, Baronchelli, YHH, '19: (tried ML on BSD);
- $\begin{tabular}{ll} \bullet & \mbox{Hierarchy of Difficulty ML struggles with:} \\ & \mbox{numerical} < \mbox{algebraic geometry over } \mathbb{C} < \\ & \mbox{combinatorics/algebra} < \mbox{number theory} \\ \end{tabular}$

GRAZIE

- Boris Zilber [Merton Professor of Logic, Oxford]: "you've managed syntax without semantics..."
- Try your favourite problem and see
- 2017:

First non-human citizen (2017, Saudi Arabia)
First non-human with UN title (2017)

First String Data Conference (2017)

Sophia (Hanson Robotics, HK)

An Analogy: $\mathbb{R} + i \sim \mathsf{QFT} + \mathsf{SUSY}$

- Do Complex Numbers exist?
- Function Theory and Geometry MUCH BETTER behaved over $\mathbb C$ than over $\mathbb R$ Theorem [Fundamental]: $\mathbb C$ is algebraic closure of $\mathbb R$
- QFT much better behaved with SUSY
 Theorem [Coleman-Mandula/Haag-Lopuszanski-Sohnius]: Nontrivial extension of Poincaré/Gauge Theory-Lie is anticommutator
- ullet Working with QFTs with SUSY is like doing algebra/geometry over ${\mathbb C}$

$$\mathbb{C} \simeq \mathbb{R}[i] \sim (SO(1,3) \rtimes L_{[,]}) \rtimes L_{\{,\}} \simeq G_{SUSY}$$

For us, SUSY → Kähler manifolds

CICYs

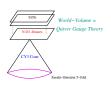
$$M = \begin{bmatrix} n_1 & q_1^1 & q_1^2 & \dots & q_1^K \\ n_2 & q_2^1 & q_2^2 & \dots & q_2^K \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n_m & q_m^1 & q_m^2 & \dots & q_m^K \end{bmatrix} \\ & - & \text{Complete Intersection Calabi-Yau (CICY) 3-folds} \\ & - & K \text{ eqns of multi-degree } q_j^i \in \mathbb{Z}_{\geq 0} \\ & \text{embedded in } \mathbb{P}^{n_1} \times \dots \times \mathbb{P}^{n_m} \\ & - & c_1(X) = 0 \leadsto \sum_{j=1}^K q_r^j = n_r + 1 \\ & m \times K & - & M^T \text{ also CICY} \end{bmatrix}$$

- The Quintic $Q = [4|5]_{-200}^{1,101}$ (or simply [5]);
- ullet CICYs Central to string pheno in the 1st decade [Distler, Greene, Ross, et al.] E_6 GUTS unfavoured; Many exotics: e.g. 6 entire anti-generations

Back to CICYs

AdS/CFT as a Quiver Rep/Moduli Variety Corr.

a 20-year prog. joint with A. Hanany, S. Franco, B. Feng, et al.



D-Brane Gauge Theory
(SCFT encoded as quiver)

←→

Vacuum Space as affine Variety

- $\bullet \ \ (\mathcal{N}=4 \ \mathsf{SYM}) \ \left(\ \underset{z \ }{\overset{x}{\bigvee}} \ , W = \mathsf{Tr}([x,y],z) \right) \longleftrightarrow \mathbb{C}^3 = \mathsf{Cone}(S^5) \ \ [\mathsf{Maldacena}]$
- THM [(P) Feng, Franco, Hanany, YHH, Kennaway, Martelli, Mekareeya, Seong, Sparks, Vafa, Vegh, Yamazaki, Zaffaroni . . .
 - (M) R. Böckland, N. Broomhead, A. Craw, A. King, G. Musiker, K. Ueda ...] (coherent component of) representation variety of a quiver is toric CY3 iff quiver + superpotential graph dual to a bipartite graph on T^2

combinatorial data/lattice polytopes \longleftrightarrow gauge thy data as quivers/graphs

A Single Neuron: The Perceptron

- began in 1957 (!!) in early AI experiments (using CdS photo-cells)
- DEF: Imitates a neuron: activates upon certain inputs, so define
 - Activation Function $f(z_i)$ for input tensor z_i for some multi-index i;
 - consider: $f(w_i z_i + b)$ with w_i weights and b bias/off-set;
 - typically, f(z) is sigmoid, Tanh, etc.
- Given training data: $D = \{(x_i^{(j)}, d^{(j)})\}$ with input x_i and known output $d^{(j)}$, minimize

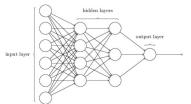
$$SD = \sum_{j} \left(f(\sum_{i} w_{i} x_{i}^{(j)} + b) - d^{(j)} \right)^{2}$$

to find optimal w_i and $b \sim$ "learning", then check against Validation Data

• Essentially (non-linear) regression

The Neural Network: network of neurons \rightarrow the "brain"

- DEF: a connected graph, each node is a perceptron (Implemented on Mathematica 11.1 + / TensorFlow-Keras on Python)
 - adjustable weights/bias;
 - ② distinguished nodes: 1 set for input and 1 for output;
 - iterated training rounds.



Simple case: forward directed only, called multilayer perceptron

- others: e.g., decision trees, support-vector machines (SVM), etc
- Essentially how brain learns complex tasks; apply to our Landscape Data

Computing Hodge Numbers: Sketch

 $\bullet \ \ \mathsf{Recall \ Hodge \ decomposition} \ \ H^{p,q}(X) \simeq H^q(X, \wedge^p T^{\star}X) \leadsto$

$$H^{1,1}(X) = H^1(X, T_X^\star), \qquad H^{2,1}(X) \simeq H^{1,2} = H^2(X, T_X^\star) \simeq H^1(X, T_X)$$

• Euler Sequence for subvariety $X \subset A$ is short exact:

$$0 \to T_X \to T_M|_X \to N_X \to 0$$

Induces long exact sequence in cohomology:

$$0 \rightarrow H^{0}(X,T_{X})^{0} \rightarrow H^{0}(X,T_{A}|_{X}) \rightarrow H^{0}(X,N_{X}) \rightarrow$$

$$\rightarrow H^{1}(X,T_{X}) \stackrel{d}{\rightarrow} H^{1}(X,T_{A}|_{X}) \rightarrow H^{1}(X,N_{X}) \rightarrow$$

$$\rightarrow H^{2}(X,T_{X}) \rightarrow \dots$$

ullet Need to compute $\mathsf{Rk}(d)$, cohomology and $H^i(X,T_A|_X)$ (Cf. Hübsch)

ArXiv Word-Clouds

dimension distriction in the control of the control

hep-th

relativistic model in control in relative accurate accura

foot having relieve with first bear data of the second of

hep-ph

critical interestion finite-votation gualanting certain control of the control of

discretion, manufaction stability name discretion, representation of classification of classification

math-ph

Back to Word2Vec

Classifying Titles

Compare, + non-physics sections, non-science (Times), pseudo-science (viXra)

Actual	Word2Vec + SVM	1	2	3	4	5	_	ſ	1	:	hep-th
	1	40.2	6.5	8.7	24.0	20.6	_	1	2	:	hep-ph
	2	7.8	65.8	12.9	9.1	4.4		{	3	:	hep-lat
	3	7.5	11.3	72.4	1.5	7.4		1	4	:	gr-qc
	4	12.4	4.4	1.0	72.1	10.2		l	5	:	math-ph
	5	10.9	2.2	4.0	7.8	75.1					

NN Actual	1	2	3	4	5	6	7	8	9	10
viXra-hep		47.4								
viXra-qgst	13.3	14.5	1.5	54.	8.4	1.8	0.1	1.1	2.8	3.

6: cond-mat, 7: q-fin, 8: stat, 9: q-bio, 10: Times of India Back to Main

