Standard Model (SM) or Standard Theory (ST)?

The many ways Beyond the SM (BSM)

R. Barbieri
Torino, May 2, 2019

Some general introductory remarks
The potential of precision in the next decade, or so
More than one (motivated) scalar (if time permits)

The SM Lagrangian

 (since 1973 in its full content)$$
\begin{aligned}
\mathcal{L}_{\sim S M}= & -\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu v}+i \bar{\psi} \not \supset \psi & & (\imath 1975-2000) \\
& +\left|D_{\mu} h\right|^{2}-V(h) & & (\imath 1990-2012-\text { now }) \\
& +\psi_{i} \lambda_{i j} \psi_{j} h+h . c . & & (\sim 2000-\text { now })
\end{aligned}
$$

In () the approximate dates of the experimental confirmation of the various lines (at different levels)

The synthetic nature of PP exhibited

The particles of the Standard Model (SM) 1973-2012

$J=0$	$\frac{Q}{e}=2 / 3 \overbrace{}^{\text {Quarks }}$		Leptons		"families" $i=$
	$u(1968)$	$d(1968)$	$e(1897)$	$\nu_{e}(1956)$	$\leftarrow 1$
$\Psi_{i}=$	c (1974)	$s(1968)$	$\mu(1937)$	$\nu_{\mu}(1962)$	$\leftarrow 2$
J=1/2	$t(1994){ }^{*}$	b (1977)	$\tau(1975)$	$\nu_{\tau}(2000)^{*}$	$\leftarrow 3$
	${ }_{H=(p e)} \quad p=($ und $) \quad n=(u d d)$				
$J=1$	(1978)*	$A_{\mu}(1905)$	$W_{\mu}(1984)$	$Z_{\mu}(198$	

($*=$ without a Nobel)

All of Particle Physics in 1 page

1. Symmetry group $L \times \mathcal{G}$
$L=$ Lorentz (space-time)
$\mathcal{G}=S U(3) \times S U(2) \times U(1) \quad$ (local)
2. Particle content (rep.s of $L \times \mathcal{G}$)

	h	Q	L	u	d	e
Lorentz	0	$1 / 2_{L}$	$1 / 2_{L}$	$1 / 2_{R}$	$1 / 2_{R}$	$1 / 2_{R}$
$S U(3)$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$
$S U(2)$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$U(1)$	$-1 / 2$	$1 / 6$	$-1 / 2$	$2 / 3$	$-1 / 3$	-1

3. All "operators" (products of $\Phi, \partial_{\mu} \Phi$) in \mathcal{L} of dimension ≤ 4
$\hbar=c=1 \Rightarrow\left[A_{\mu}\right]=[\phi]=\left[\partial_{\mu}\right]=M, \quad[\Psi]=M^{3 / 2}, \quad[\mathcal{L}]=M^{4}$

Problems of (questions for) the SM

0. Which rationale for matter quantum numbers?

$$
\left|Q_{n}-Q_{p}-Q_{e}\right|<10^{-21} e
$$

1. Phenomena unaccounted for

neutrino masses
Dark matter
2. Why $\theta \lesssim 10^{-10}$?

Axions
3. $\mathcal{O}_{i}: d\left(\mathcal{O}_{i}\right) \leq 4$ only?
neutrino masses Are the protons forever?
What about individual L_{i} conservations?
4. Lack of calculability (a euphemism)
\Rightarrow the hierarchy problem the flavour puzzle none of the 15 masses predicted in the SM

The hierarchy problem, once again Can we compute the Higgs mass/vev in terms of some fundamental dynamics?

NOT in the SM

$$
\begin{aligned}
& n_{h}^{\mathrm{t}}=\frac{3 y_{t}^{2}}{4 \pi^{2}} \Lambda_{t}^{2}-\frac{9 g^{2}}{32 \pi^{2}} \Lambda_{g}^{2}-\frac{3 g^{\prime 2}}{32 \pi^{2}} \Lambda_{g}^{\prime 2}
\end{aligned}
$$

The "standard" reaction
Introduce top "partners", J=0 or 1/2, coloured or uncoloured, (see below) with a mass not far from a TeV, capable to cutoff the Λ^{2} divergence No successful search, so far

None of these masses (17-2) or mixings

are predicted in the Standard Model

The flavour paradox $\quad \lambda_{i j} \Psi_{i} \Psi_{j}$

The Yukawa couplings are progressively becoming a piece of physical reality

$$
\begin{gathered}
\mathcal{L}_{Y}=\lambda_{i} \bar{\Psi}_{i} \Psi_{i} h \\
\Rightarrow \lambda_{i}(v+H) \bar{\Psi}_{i} \Psi_{i} \\
\Rightarrow m_{i}=\lambda_{i} v
\end{gathered}
$$

$$
\left(\frac{\lambda_{e(\mu)}}{\lambda_{\tau}}<0.2, \quad \frac{\lambda_{u(c)}}{\lambda_{t}}<0.04, \quad \frac{\lambda_{d(s)}}{\lambda_{b}}<0.7\right)
$$

As opposed to the hard time in trying to explain the spectrum and the mixing of quarks and leptons

Not easy to improve without observing deviations from the SM

The many different directions in BSM

 (for an audience of philosophers, sic)
1. Explore the space of theories

- Address a specific problem, theoretical or experimental E.g.: Supersymmetry, DM axions, Baryogenesis, ...
- Expand the set of consistent and potentially "true" theories E.g.: Supersymmetry, conformal field theory, string theory, ...

2. Explore the space of observables

- Test a "true" theory
E.g.: Precision tests of the SM
- Extend the explorable territory
E.g.: Where can one look for "DM"? Are there new light particles?

The emphasis on the specific direction is time dependent
To concentrate now on a single direction is dangerous

The potential of precision in the next decade

 (mostly, but not only, at LHC)- Higgs couplings

$$
\mathcal{L}=-\lambda k_{\lambda} H^{4}+g_{f} k_{f} H \bar{f} f+g_{V} k_{V} V_{\mu} H^{+} \partial_{\mu} H
$$

- ElectroWeak observables

Pole observables: $m_{W}, \sin \theta_{e f f}^{l}$
Drell-Yan $l^{+} l^{-}, l \nu$ at high $m_{l l}, m_{l l}^{T}$
DiBoson production $W h, Z h, W Z, W W$

- Flavour observables

Testing the FCNC loops
Lepton Flavour Violation
The role of flavour in BSM

Higgs couplings

$$
\mathcal{L}=g_{f} k_{F} H \bar{f} f+g_{V} k_{V} V_{\mu} H^{+} \partial_{\mu} H
$$

Direct versus indirect searches

Consider, e.g. $\quad p p \rightarrow \rho \rightarrow W Z$ with $m_{\rho}=g_{\rho} f$ and $g_{f}=\frac{g^{2}}{g_{\rho}}$
Excluded
by precision

Thamm, Torre, Wulzer 2015

$$
\begin{aligned}
& V(h)= \frac{1}{2} m_{h}^{2} h^{2}+\frac{m_{h}^{2}}{2 v} \\
& k_{\lambda} h^{3}+\frac{m_{h}^{2}}{8 v^{2}} h^{4} \\
& k_{\lambda}=1 \text { in the } \mathrm{SM}
\end{aligned}
$$

Can one measure it directly?

CMS-PAS-FTR-16-002
CMS Projection $\sqrt{s}=13 \mathrm{TeV} \quad \mathrm{SM}$ gg $\rightarrow \mathrm{HH}$

As difficult as important significant deviations conceivable in BSM

Which deviations conceivable in BSM?

$$
V(H)=\frac{m_{*}^{2}}{4 g_{*}^{2}} \Sigma a_{n}\left(\frac{2 H^{2}-v^{2}}{f^{2}}\right)^{n}
$$

$$
\Delta_{3} \equiv k_{\lambda}-1
$$

Falkowski, Rattazzi 2019

Taking advantage of the high energy growth (in progress)

$B=1$ (SM background)
Henning, Lombardo, Riembau, Riva 2018

The potential of precision in the next decade

- ElectroWeak observables

Pole observables: $m_{W}, \sin \theta_{e f f}^{l}$
Drell-Yan $l^{+} l^{-}, l \nu$ at high $m_{l l}, m_{l l}^{T}$
DiBosons $W h, Z h, W Z, W W$

Comparing direct measurements with virtual effects

Blue $=$ prediction of m_{t}, M_{W} by fitting "pole observables" in the SM, with crucial inclusion of loop effects
Green $=$ direct measurements of m_{t}, M_{W}

Constraints from pole observables

Standard parameters: \hat{S}, \hat{T} or $\epsilon_{3}, \epsilon_{1}$

In a composite Higgs picture:
$\Delta \hat{S}=\frac{g^{2}}{96 \pi^{2}} \xi \log \left(\frac{\Lambda}{m_{h}}\right)+\frac{m_{W}^{2}}{m_{\rho}^{2}}+\alpha \frac{g^{2}}{16 \pi^{2}} \xi$,
$\Delta \hat{T}=-\frac{3 g^{\prime 2}}{32 \pi^{2}} \xi \log \left(\frac{\Lambda}{m_{h}}\right)+\beta \frac{3 y_{t}^{2}}{16 \pi^{2}} \xi$,

Thamm, Torre, Wulzer 2015

Nominally the limit on ξ, or on f better than from Higgs couplings, but the fudge factors α, β

B, Bellazzini et al2007
$p p \rightarrow l^{+} l^{-}, l \nu$ at high $m_{l l}, m_{l l}^{T}$

W	$-\frac{\mathrm{W}}{4 m_{W}^{2}}\left(D_{\rho} W_{\mu \nu}^{a}\right)^{2}$
Y	$-\frac{\mathrm{Y}}{4 m_{W}^{2}}\left(\partial_{\rho} B_{\mu \nu}\right)^{2}$

$$
\mathcal{L}=g_{V} V_{\mu}^{a}\left(f \tau^{a} \gamma_{\mu} f+i H^{+} D_{\mu} H\right)
$$

On some observables (W, Y) LEP beaten by LHC (if suitable precision pursued)

DiBoson differential cross section with suitable angular analyses

$$
\delta A\left(\bar{q} q^{\prime} \rightarrow W Z\right) \approx a_{q}^{(3)} E^{2}
$$

(but not loop suppressed)

Direct search

Franceschini et al 2018

The potential of precision in the next decade

- Flavour observables

Testing the FCNC loops
Lepton Flavour Violation
The role of flavour in BSM

FCNC versus EWPT: a significant comparison

$\epsilon_{1}^{S M}=5.21 \cdot 10^{-3}, \epsilon_{3}^{S M}=5.28 \cdot 10^{-3}$

measures EW loops at about 20\% level

A future facility (FCCee, ...) could go to 2% level

measures FCNC loops at about 20\% level

An "aggressive" flavour program could go to 2% level

CPV now and in prospects

A violation of Lepton Flavour Universality?

$$
R_{D^{(*)}}=\frac{B R\left(B \rightarrow D^{(*)} \tau \nu\right)}{B R\left(B \rightarrow D^{(*)} l \nu, l=\mu, e\right)} \quad R_{K^{(*)}}=\frac{B R\left(B \rightarrow K^{(*)} \mu \mu\right)}{B R\left(B \rightarrow K^{(*)} e e\right)}
$$

Much too early to say, but...

More data from a month ago

Still in the limbo, but the future precision...

Observable	Current LHCb	LHCb 2025	Upgrade II
$\mathbf{E W}$ Penguins			
$\bar{R}_{K}\left(1<q^{2}<6 \mathrm{GeV}^{2} c^{4}\right)$	$0.1[4]$	0.025	0.007
$R_{K^{*}}\left(1<q^{2}<6 \mathrm{GeV}^{2} c^{4}\right)$	$0.1[5]$	0.031	0.008
$\boldsymbol{b} \rightarrow \boldsymbol{c} \boldsymbol{l}^{-} \overline{\boldsymbol{\nu}_{l}}$ LUV studies			
$R\left(D^{*}\right)$	$0.026[15,16]$	0.0072	0.002
$R(J / \psi)$	$0.24[17]$	0.071	0.02

My best prediction

with Robert Ziegler 2019

$$
\Delta R_{D} \equiv \frac{R_{D^{(*)}}}{R_{D^{(*)}}^{S M}}-1 \quad \Delta C_{9}^{\mu} \approx-2 \Delta R_{K} \approx-2 \Delta R_{K^{*}}
$$

From
c
$b \rightarrow c \tau \nu$
and
$\overbrace{\mu}^{b}$
$b \rightarrow s \mu \mu$

Now
$\Delta R_{D} \approx 20 \%$

A perfect example of complementarity

$b \rightarrow c \tau \nu$

$b \rightarrow s \mu \mu$
then

$p p \rightarrow b b \rightarrow \tau \tau$

Schmaltz, Zhong 2018

Which attitude towards flavour in BSM?

1. Flavour physics confined to high energy
(the prevailing lore)

$$
\mathcal{L}=\mathcal{L}_{S M}+\Sigma_{i}^{\alpha} \frac{C_{i}^{\alpha}}{\Lambda_{i}^{\alpha}}(\bar{f} f \bar{f} f)_{i}^{\alpha}
$$

$i=1, \ldots, 5=$ different Lorentz structures

2. New physics at the TeV scale hidden by
a suitable (approximate) flavour symmetry
If so, a special role played by the third generation, special because of its masses and (in the quarks) its small mixing with the first two generations $10^{-(2 \div 3)}$

An "Extreme Flavour" experiment?

Vagnoni - SNS, 7-10 Dec 2014

- Currently planned experiments at the HL-LHC will only exploit a small fraction of the huge rate of heavyflavoured hadrons produced
- ATLAS/CMS: full LHC integrated luminosity of $3000 \mathrm{fb}^{-1}$, but limited efficiency due to lepton high p_{T} requirements
- LHCb: high efficiency, also on charm events and hadronic final states, but limited in luminosity, $50 \mathrm{fb}^{-1}$ vs $3000 \mathrm{fb}^{-1}$
- Would an experiment capable of exploiting the full HLLHC luminosity for flavour physics be conceivable?
- Aiming at collecting O(100) times the LHCb upgrade luminosity $\rightarrow 10^{14} \mathrm{~b}$ and $10^{15} \mathrm{c}$ hadrons in acceptance at $\mathrm{L}=10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

$$
\begin{gathered}
\text { Motivation: test CKM (FCNC loops) } \\
\text { from } \simeq 20 \% \text { to } \approx 1 \%
\end{gathered}
$$

More than one (motivated) scalar (MSSM, NMSSM,etc)

- "Inert" doublet Dark Matter: H_{1}, H_{2}

$$
H_{2}: \quad<H_{2}>=0, \quad H_{2} \bar{f} f \text { forbidden }
$$

The lightest member of H_{2}, if neutral, is a DM candidate

- "Singlet-Catalysed" EW phase transition: H,S

$$
\Delta V=\lambda_{1} M\left(H^{+} H\right) S+\lambda_{2}\left(H^{+} H\right) S^{2}
$$

Can induce a first order phase transition, crucial to Baryogenesis

- "Twin" Higgs: H, H^{\prime}

$$
\begin{aligned}
& \mathrm{H}^{\prime}=\text { doublet of a "twin" } \operatorname{SU}(2) \\
& V\left(H, H^{\prime}\right) \rightarrow V(\mathcal{H}), \quad|\mathcal{H}|^{2}=|H|^{2}+\left|H^{\prime}\right|^{2} \\
& h \text { is a pseudo-Goldstone }
\end{aligned}
$$

Twin Higg: "Neutral" naturalness

Chacko, Goh, Harnik 2005
B, Hall, Gregoire 2005
$V\left(H, H^{\prime}\right) \rightarrow V(\mathcal{H}), \quad|\mathcal{H}|^{2}=|H|^{2}+\left|H^{\prime}\right|^{2}$ is $S O(8)$-symmetric $V(\mathcal{H}): S O(8) \rightarrow S O(7) \Rightarrow 7 P G B s, S U(2)^{\prime} \times U(1)^{\prime} \rightarrow U(1)_{e m}^{\prime}$
 q^{\prime}
"Fraternal Higgs"
(Neutral naturalness)
Replicate only $y_{t} H \bar{q} t$
(and rely on suitable initial conditions at the cutoff)
"Mirror World"
Replicate the full \mathcal{L}_{321}
$\mathcal{L}_{321} \leftrightarrow \mathcal{L}_{321}^{\prime}$ by a Z_{2}-symmetry $S O(4) \times S O(4) \rightarrow S O(8)$

Lee, Yang 1956
Craig, Katz, Strassler, Sundrum 2015
Koblarev, Okun, Pomeranchuk 1966

- "Twin" Higgs: H, H^{\prime}

$$
\sigma\left(p p \rightarrow h^{\prime}\right) \approx \xi \sigma\left(p p \rightarrow h_{S M}\left(m=m_{h^{\prime}}\right)\right) \text { via a top loop }
$$

Neglecting phase space

$$
\frac{\Gamma_{L}}{\Gamma_{L}+\Gamma_{T}} \rightarrow 1
$$

f	$Z Z$	$W W$	$h h$	$W^{\prime} W^{\prime}$	$Z^{\prime} Z^{\prime}$
$\Gamma\left(\tilde{h}^{\prime} \rightarrow f\right)$	1	2	1	2	1

Buttazzo, Sala, Tesi 2018

Summary

1. To turn the SM into a ST still premature
2. BSM more relevant then ever, though in more diversified directions than 10 years ago, rightly so
3. A significant discovery potential in precision at LHC

- Higgs couplings
- Extended EW precision tests
- Flavour observables
highly complementary between themselves and with direct searches

4. A pending question: why a single scalar?
