THE STANDARD MODEL AND EXPERIMENT

John Iliopoulos, ENS, Paris

Torino

February 8, 2019

The STANDARD MODEL in Particle Physics

A Quantum Field Theory describing in a unified framework all
experimentally known interactions among elementary particles.

What is an ELEMENTARY PARTICLE?

or, What is the World made of ?

What is an ELEMENTARY PARTICLE?

or, What is the World made of ?

- I. The constituents of matter

Over the last century we have uncovered many layers of this cosmic onion:
atoms \rightarrow
nuclei + electrons \rightarrow
protons + neutrons + electrons \rightarrow
quarks + electrons \rightarrow ??
There is no reason to believe that there exists such a thing as "an innermost layer" and, even less, that we have already reached it.

What is an ELEMENTARY PARTICLE?

or, What is the World made of ?
II. The Quanta of Radiation

Like the photon, they transmit the interactions.
We know that all interactions are mediated by the exchange of such quanta.
The range of every interaction depends on the mass of the corresponding quantum

$$
V(r) \sim \frac{\mathrm{e}^{-m r}}{r}
$$

TABLE OF ELEMENTARY PARTICLES		
QUANTA OF RADIATION		
Strong Interactions	Eight gluons	
Electromagnetic Interactions	Photon (γ)	
Weak Interactions	Bosons W^{+}, W^{-}, Z^{0}	
Gravitational Interactions	Graviton $(?)$	
MATTER PARTICLES		
	Leptons	
1st Family	ν_{e}, e^{-}	
2nd Family	ν_{μ}, μ^{-}	
3rd Family	ν_{τ}, τ^{-}	
BROUT-ENGLERT-HIGGS BOSON		
$d_{a}, a=1,2,3$		

This Table shows our present ideas on the structure of matter. Quarks and gluons do not exist as free particles and the graviton has not yet been observed

The four fundamental interactions

- The strong interactions.

Responsible for nuclear structure.

The four fundamental interactions

- The strong interactions.

Responsible for nuclear structure.

- The electromagnetic interactions.

Responsible for atomic and molecular structure.

The four fundamental interactions

- The strong interactions.

Responsible for nuclear structure.

- The electromagnetic interactions. Responsible for atomic and molecular structure.
- The weak interactions.

Responsible for nuclear β-decay as well as the decays of other unstable particles.

The four fundamental interactions

- The strong interactions.

Responsible for nuclear structure.

- The electromagnetic interactions. Responsible for atomic and molecular structure.
- The weak interactions.

Responsible for nuclear β-decay as well as the decays of other unstable particles.

- The gravitational interactions.

Manifest in everyday life, they are responsible for the large scale structure of the Universe. At the microscopic level, their effects are too small to be observable.

The Standard Model describes accurately the strong, the electromagnetic and the weak interactions.

It is based on two fundamental principles:

The Standard Model describes accurately the strong, the electromagnetic and the weak interactions.

It is based on two fundamental principles:

- A Dynamical Theory \equiv A Quantum Field Theory

The Standard Model describes accurately the strong, the electromagnetic and the weak interactions.

It is based on two fundamental principles:

- A Dynamical Theory \equiv A Quantum Field Theory
- A property of Symmetry (a "gauge" symmetry) which brings Geometry into Physics.

I. The Dynamics

The two classical forces
-Electromagnetism
-Gravitation
are both described by the same classical potential:

$$
V(r) \sim 1 / r
$$

which is singular for $r \rightarrow 0$.

A classical atom is unstable!

- Non-Relativistic Quantum Mechanics solves this problem

$$
\Delta(x) \Delta(p) \geq \hbar
$$

The energy levels in an electromagnetic or a gravitational potential are quantised.

- Non-Relativistic Quantum Mechanics solves this problem

$$
\Delta(x) \Delta(p) \geq \hbar
$$

The energy levels in an electromagnetic or a gravitational potential are quantised.

- but the relativistic corrections bring it back!
- Non-Relativistic Quantum Mechanics solves this problem

$$
\Delta(x) \Delta(p) \geq \hbar
$$

The energy levels in an electromagnetic or a gravitational potential are quantised.

- but the relativistic corrections bring it back!
- A remark: The uncertainty relations solve the problem of the $1 / r$ potential.
Not for every potential
- Modern theoretical Physics has a precise date of birth June 2-4 1947, the Shelter Island Conference

Birth of Quantum Electrodynamics

The first consistent Quantum Field Theory, free of singularities at all distances!

- Modern theoretical Physics has a precise date of birth June 2-4 1947, the Shelter Island Conference

Birth of Quantum Electrodynamics
The first consistent Quantum Field Theory, free of singularities at all distances!

- Quantum Field Theories satisfy also uncertainty relations
- Modern theoretical Physics has a precise date of birth June 2-4 1947, the Shelter Island Conference

Birth of Quantum Electrodynamics

The first consistent Quantum Field Theory, free of singularities at all distances!

- Quantum Field Theories satisfy also uncertainty relations
- Quantum mechanics uncertainty relations do NOT solve the problem for all potentials
- Modern theoretical Physics has a precise date of birth June 2-4 1947, the Shelter Island Conference

Birth of Quantum Electrodynamics

The first consistent Quantum Field Theory, free of singularities at all distances!

- Quantum Field Theories satisfy also uncertainty relations
- Quantum mechanics uncertainty relations do NOT solve the problem for all potentials
- Quantum field theory uncertainty relations do NOT solve the problem for all quantum field theories. (Renormalisable QFTs)
- Modern theoretical Physics has a precise date of birth June 2-4 1947, the Shelter Island Conference

Birth of Quantum Electrodynamics

The first consistent Quantum Field Theory, free of singularities at all distances!

- Quantum Field Theories satisfy also uncertainty relations
- Quantum mechanics uncertainty relations do NOT solve the problem for all potentials
- Quantum field theory uncertainty relations do NOT solve the problem for all quantum field theories. (Renormalisable QFTs)
- Quantum Electrodynamics seemed to be the only interesting case

Classical
Quantum Mechanics $\Rightarrow[q(t), p(t)]=i \hbar \Rightarrow$ $q(t), p(t)$
$q_{i}(t), p_{i}(t) \quad \Rightarrow\left[q_{i}(t), p_{i}(t)\right]=i \hbar \delta_{i j}$
$i=1, \ldots, N$
$N \rightarrow \infty$
\Downarrow
Classical

Quantum

Field $\quad \Rightarrow[q(\vec{x}, t), p(\vec{y}, t)]=i \hbar \delta^{3}(\vec{x}-\vec{y}) \Rightarrow$ Field Theory

Theory $q(\vec{x}, t), p(\vec{x}, t)$

- Classical Field Theory

Classical Mechanics

With an infinite number of degrees of freedom

- Classical Field Theory

Classical Mechanics

With an infinite number of degrees of freedom

- Quantum Field Theory

Quantum Mechanics
With an infinite number of degrees of freedom

- Classical Field Theory

Classical Mechanics

With an infinite number of degrees of freedom

- Quantum Field Theory

Quantum Mechanics
With an infinite number of degrees of freedom

- It is always the case with a relativistic theory

Historical notes

Historical notes

- 1925 : Born-Heisenberg-Jordan

The free electromagnetic field as an infinite set of harmonic oscillators

Historical notes

- 1925 : Born-Heisenberg-Jordan

The free electromagnetic field as an infinite set of harmonic oscillators

- 1927 : Dirac

The spontaneous emission probability

Historical notes

- 1925 : Born-Heisenberg-Jordan

The free electromagnetic field as an infinite set of harmonic oscillators

- 1927 : Dirac

The spontaneous emission probability

- 1930: Ambartsumian-Ivanenko

Canonical quantisation of massive fields

Historical notes

- 1925 : Born-Heisenberg-Jordan

The free electromagnetic field as an infinite set of harmonic oscillators

- 1927: Dirac

The spontaneous emission probability

- 1930 : Ambartsumian-Ivanenko

Canonical quantisation of massive fields

- 1933 : Perrin

In nuclear β-decay, the emitted electrons and neutrinos are created the moment of emission

Historical notes

- 1925 : Born-Heisenberg-Jordan

The free electromagnetic field as an infinite set of harmonic oscillators

- 1927: Dirac

The spontaneous emission probability

- 1930 : Ambartsumian-Ivanenko

Canonical quantisation of massive fields

- 1933 : Perrin

In nuclear β-decay, the emitted electrons and neutrinos are created the moment of emission

- 1933 : Fermi

Fermions quantised. Quantum Field Theory becomes the language of microscopic physics

Renormalisable theories

In our four dimensional space there exist FIVE renormalisable quantum field theories:

- $\phi^{3}(x)$
- $\phi^{4}(x)$
- The Yukawa interaction: $\bar{\psi}(x) \psi(x) \phi(x)$
- QED: $\bar{\psi}(x) \gamma_{\mu} \psi(x) A^{\mu}(x)$ (and scalar QED)
- The Yang-Mills interaction: $\operatorname{Tr}\left(F^{\mu \nu}(x) F_{\mu \nu}(x)\right)$

Remarks

Remarks

- Our modern views on Quantum Field Theory have been profoundly reshaped by K. Wilson

Remarks

- Our modern views on Quantum Field Theory have been profoundly reshaped by K. Wilson
- Renormalisable theories, like $1 / r$ potentials, are not very sensitive to, necessarily unknown, physics at arbitrarily short distances

Remarks

- Our modern views on Quantum Field Theory have been profoundly reshaped by K. Wilson
- Renormalisable theories, like $1 / r$ potentials, are not very sensitive to, necessarily unknown, physics at arbitrarily short distances
- The gravitational interaction is not one of them

Remarks

- Our modern views on Quantum Field Theory have been profoundly reshaped by K. Wilson
- Renormalisable theories, like $1 / r$ potentials, are not very sensitive to, necessarily unknown, physics at arbitrarily short distances
- The gravitational interaction is not one of them
- Nature uses ALL five renormalisable theories, and ONLY them, as fundamental theories

Remarks

- Our modern views on Quantum Field Theory have been profoundly reshaped by K. Wilson
- Renormalisable theories, like $1 / r$ potentials, are not very sensitive to, necessarily unknown, physics at arbitrarily short distances
- The gravitational interaction is not one of them
- Nature uses ALL five renormalisable theories, and ONLY them, as fundamental theories
- We only have approximate solutions

Remarks

- Our modern views on Quantum Field Theory have been profoundly reshaped by K. Wilson
- Renormalisable theories, like $1 / r$ potentials, are not very sensitive to, necessarily unknown, physics at arbitrarily short distances
- The gravitational interaction is not one of them
- Nature uses ALL five renormalisable theories, and ONLY them, as fundamental theories
- We only have approximate solutions
- The effective strength of the interaction depends in a calculable way on the energy, or distance, scale. (Renormalisation group)

The uses of Quantum Field Theory

The uses of Quantum Field Theory

- It covers the entire domain of fundamental physics

The uses of Quantum Field Theory

- It covers the entire domain of fundamental physics
- High Energy Physics

The uses of Quantum Field Theory

- It covers the entire domain of fundamental physics
- High Energy Physics
- Nuclear structure

The uses of Quantum Field Theory

- It covers the entire domain of fundamental physics
- High Energy Physics
- Nuclear structure
- Condensed matter physics

The uses of Quantum Field Theory

- It covers the entire domain of fundamental physics
- High Energy Physics
- Nuclear structure
- Condensed matter physics
- Phase transitions and critical phenomena

The uses of Quantum Field Theory

- It covers the entire domain of fundamental physics
- High Energy Physics
- Nuclear structure
- Condensed matter physics
- Phase transitions and critical phenomena
- Cosmology and astrophysics

II. Symmetries: A well known, but quite abstract concept

- Symmetry $=$ An assumption that a certain quantity has no physical meaning.

Physically meaningful results cannot depend on it.

II. Symmetries: A well known, but quite abstract concept

- Symmetry $=$ An assumption that a certain quantity has no physical meaning.

Physically meaningful results cannot depend on it.

- The position of the origin of the coordinate system \Rightarrow We can move the coordinate system \Rightarrow Invariance under translations

II. Symmetries: A well known, but quite abstract concept

- Symmetry $=$ An assumption that a certain quantity has no physical meaning.

Physically meaningful results cannot depend on it.

- The position of the origin of the coordinate system \Rightarrow We can move the coordinate system \Rightarrow Invariance under translations
- The direction of the axes in space \Rightarrow We can rotate the coordinate system \Rightarrow Invariance under rotations

Invariance under translations

$$
\vec{x}^{\prime}=\vec{x}+\vec{a}
$$

If A is the trajectory of a free particle in the (x, y, z) system, its image, A^{\prime}, is also a possible trajectory of a free particle.

The first abstraction: Internal Symmetries

Heisenberg 1932
electron with spin up
electron with spin down
proton=nucleon with isospin up
neutron=nucleon with isospin down

rotation

rotation
in iso-space

- Heisenberg's iso-space is three dimensional, isomorphic to our physical space.
- Heisenberg's iso-space is three dimensional, isomorphic to our physical space.
- With the discovery of new internal symmetries the idea was generalised to multi-dimensional internal spaces.
- Heisenberg's iso-space is three dimensional, isomorphic to our physical space.
- With the discovery of new internal symmetries the idea was generalised to multi-dimensional internal spaces.
- The space of Physics became an abstract mathematical concept with non-trivial geometrical and topological properties.
- Heisenberg's iso-space is three dimensional, isomorphic to our physical space.
- With the discovery of new internal symmetries the idea was generalised to multi-dimensional internal spaces.
- The space of Physics became an abstract mathematical concept with non-trivial geometrical and topological properties.
- Only a part of it, the three-dimensional Euclidean space, is directly accessible to our senses.

A further abstraction: Local Symmetries

Einstein 1918

Local space translations

$$
\vec{x}^{\prime \prime}=\vec{x}+\vec{a}(\vec{x}, t)
$$

- Local space translations

The question is purely geometrical without any obvious physical meaning, so we expect a mathematical answer with no interest for Physics.

- Local space translations

The question is purely geometrical without any obvious physical meaning, so we expect a mathematical answer with no interest for Physics.

- Surprise: The Dynamics which is invariant under local translations is

GENERAL RELATIVITY

The resulting force is Gravity
One of the four fundamental forces.

Local Internal Symmetries

The gravitational forces are not the only ones which have a geometrical origin

- The example of the quantum mechanical phase:

$$
\Psi(x) \rightarrow e^{i \theta} \Psi(x) \quad \text { with } \quad \theta \rightarrow \theta(x)
$$

Local Internal Symmetries

The gravitational forces are not the only ones which have a geometrical origin

- The example of the quantum mechanical phase:

$$
\begin{aligned}
& \Psi(x) \rightarrow e^{i \theta} \Psi(x) \quad \text { with } \quad \theta \rightarrow \theta(x) \\
- & \partial_{\mu} e^{i \theta(x)} \Psi(x)=e^{i \theta(x)} \partial_{\mu} \Psi(x)+i e^{i \theta(x)} \Psi(x) \partial_{\mu} \theta(x)
\end{aligned}
$$

Local Internal Symmetries

The gravitational forces are not the only ones which have a geometrical origin

- The example of the quantum mechanical phase:

$$
\begin{aligned}
& \Psi(x) \rightarrow e^{i \theta} \Psi(x) \quad \text { with } \quad \theta \rightarrow \theta(x) \\
- & \partial_{\mu} e^{i \theta(x)} \Psi(x)=e^{i \theta(x)} \partial_{\mu} \Psi(x)+i e^{i \theta(x)} \Psi(x) \partial_{\mu} \theta(x)
\end{aligned}
$$

- Introduce $A_{\mu}(x)$ such that

$$
A_{\mu}(x) \rightarrow A_{\mu}(x)-\frac{1}{e} \partial_{\mu} \theta(x)
$$

Local Internal Symmetries

The gravitational forces are not the only ones which have a geometrical origin

- The example of the quantum mechanical phase:

$$
\begin{aligned}
& \Psi(x) \rightarrow e^{i \theta} \Psi(x) \quad \text { with } \quad \theta \rightarrow \theta(x) \\
- & \partial_{\mu} e^{i \theta(x)} \Psi(x)=e^{i \theta(x)} \partial_{\mu} \Psi(x)+i e^{i \theta(x)} \Psi(x) \partial_{\mu} \theta(x)
\end{aligned}
$$

- Introduce $A_{\mu}(x)$ such that

$$
A_{\mu}(x) \rightarrow A_{\mu}(x)-\frac{1}{e} \partial_{\mu} \theta(x)
$$

- Then

$$
\partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu}-i e A_{\mu}(x) \quad ; \quad D_{\mu} e^{i \theta(x)} \Psi(x)=e^{i \theta(x)} D_{\mu} \Psi(x)
$$

Local Internal Symmetries

The gravitational forces are not the only ones which have a geometrical origin

- The example of the quantum mechanical phase:

$$
\begin{aligned}
& \Psi(x) \rightarrow e^{i \theta} \Psi(x) \quad \text { with } \quad \theta \rightarrow \theta(x) \\
- & \partial_{\mu} e^{i \theta(x)} \Psi(x)=e^{i \theta(x)} \partial_{\mu} \Psi(x)+i e^{i \theta(x)} \Psi(x) \partial_{\mu} \theta(x)
\end{aligned}
$$

- Introduce $A_{\mu}(x)$ such that

$$
A_{\mu}(x) \rightarrow A_{\mu}(x)-\frac{1}{e} \partial_{\mu} \theta(x)
$$

- Then

$$
\partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu}-i e A_{\mu}(x) \quad ; \quad D_{\mu} e^{i \theta(x)} \Psi(x)=e^{i \theta(x)} D_{\mu} \Psi(x)
$$

- Replacing ∂_{μ} by D_{μ} turns any equation which was invariant under the global phase transformation, invariant under the local (gauge) one.
Fock 1926

Local Internal Symmetries

- The introduction of the covariant derivative: The free Schrödinger, or Dirac, equation \Rightarrow

The same equation in the presence of an external electromagnetic field

Local Internal Symmetries

- The introduction of the covariant derivative:

The free Schrödinger, or Dirac, equation \Rightarrow
The same equation in the presence of an external electromagnetic field

- To obtain the fully interacting theory:

Add the energy of the new vector field:
$\sim F_{\mu \nu}^{2}=\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)^{2}$
The resulting interaction is:
QUANTUM ELECTRODYNAMICS

- The great progress of the last fifty years in our understanding of the fundamental forces was the realisation that They all obey the principle of Geometry
- The great progress of the last fifty years in our understanding of the fundamental forces was the realisation that They all obey the principle of Geometry
- They are all gauge forces
- The great progress of the last fifty years in our understanding of the fundamental forces was the realisation that They all obey the principle of Geometry
- They are all gauge forces
- DYNAMICS = GEOMETRY

"Let no one ignorant of geometry enter under this roof"

THE STANDARD MODEL

- It describes, in a unified framework, the strong, the e.m. and the weak interactions.

THE STANDARD MODEL

- It describes, in a unified framework, the strong, the e.m. and the weak interactions.
- It is based on a rather complicated gauge symmetry:

$$
U(1) \times S U(2) \times S U(3) \rightarrow U(1)_{e m} \times S U(3)
$$

THE STANDARD MODEL

- It describes, in a unified framework, the strong, the e.m. and the weak interactions.
- It is based on a rather complicated gauge symmetry:
$U(1) \times S U(2) \times S U(3) \rightarrow U(1)_{e m} \times S U(3)$
- It can be implemented in an internal space with as many as ten dimensions

THE STANDARD MODEL

- It describes, in a unified framework, the strong, the e.m. and the weak interactions.
- It is based on a rather complicated gauge symmetry:
$U(1) \times S U(2) \times S U(3) \rightarrow U(1)_{e m} \times S U(3)$
- It can be implemented in an internal space with as many as ten dimensions
- But then we faced a new problem: THE PROBLEM OF MASS

The problem of mass

The problem of mass

- No terms proportional to $A_{\mu} A^{\mu}$
\Rightarrow the gauge fields describe massless particles.
\Rightarrow Gauge symmetries imply long range correlations
Useless for Physics??

The problem of mass

- No terms proportional to $A_{\mu} A^{\mu}$
\Rightarrow the gauge fields describe massless particles.
\Rightarrow Gauge symmetries imply long range correlations
Useless for Physics??
- The mass of the constituents of matter - chirality

The problem of mass

- No terms proportional to $A_{\mu} A^{\mu}$
\Rightarrow the gauge fields describe massless particles.
\Rightarrow Gauge symmetries imply long range correlations
Useless for Physics??
- The mass of the constituents of matter - chirality

$\mathrm{s}=-1 / 2$ v

The problem of mass

- No terms proportional to $A_{\mu} A^{\mu}$
\Rightarrow the gauge fields describe massless particles.
\Rightarrow Gauge symmetries imply long range correlations
Useless for Physics??
- The mass of the constituents of matter - chirality

$\mathrm{s}=-1 / 2$
v
- Weak interactions involve only particles with one chirality \Rightarrow The constituents of matter must be massless

The problem of mass

- No terms proportional to $A_{\mu} A^{\mu}$
\Rightarrow the gauge fields describe massless particles.
\Rightarrow Gauge symmetries imply long range correlations
Useless for Physics??
- The mass of the constituents of matter - chirality

$\mathrm{s}=-1 / 2$
v
- Weak interactions involve only particles with one chirality \Rightarrow The constituents of matter must be massless
- Most of the particles in our Table are massive This was THE PROBLEM OF MASS

Spontaneous Symmetry Breaking (SSB)

- An infinite system may exhibit the phenomenon of phase transitions. It often implies a reduction in the symmetry of the ground state.

Spontaneous Symmetry Breaking (SSB)

- An infinite system may exhibit the phenomenon of phase transitions. It often implies a reduction in the symmetry of the ground state.
- For a field theory, in many cases, we encounter at least two phases:
(i) The unbroken, or, the Wigner phase: A symmetry is manifest in the spectrum of the theory whose excitations form irreducible representations of the symmetry group. For a gauge theory the vector gauge bosons are massless and belong to the adjoint representation.
(ii) The spontaneously broken phase: Part of the symmetry is hidden from the spectrum. For a gauge theory, some of the gauge bosons become massive.

SSB: Global Symmetries

An example from Classical Mechanics

$I E \frac{d^{4} X}{d z^{4}}+F \frac{d^{2} X}{d z^{2}}=0 \quad ; \quad I E \frac{d^{4} Y}{d z^{4}}+F \frac{d^{2} Y}{d z^{2}}=0$
$X=X^{\prime \prime}=Y=Y^{\prime \prime}=0$ for $z=0$ and $z=I$

SSB: Global Symmetries

An example from Classical Mechanics

- A symmetric solution always exists: $X=Y=0$

SSB: Global Symmetries

An example from Classical Mechanics

- A symmetric solution always exists: $X=Y=0$
- For $F \geq F_{c r}=\frac{\pi^{2} E l}{l^{2}}$ asymmetric solutions appear:

$$
X=C \sin k z ; k I=n \pi ; n=1, \ldots ; \quad k^{2}=F / E I
$$

They correspond to lower energy.

SSB: Global Symmetries

An example from Classical Mechanics

- A symmetric solution always exists: $X=Y=0$
- For $F \geq F_{c r}=\frac{\pi^{2} E l}{l^{2}}$ asymmetric solutions appear:

$$
X=C \sin k z ; k I=n \pi ; n=1, \ldots ; \quad k^{2}=F / E I
$$

They correspond to lower energy.

- What happened to the original symmetry?

SSB: Global Symmetries

An example from Classical Mechanics

- A symmetric solution always exists: $X=Y=0$
- For $F \geq F_{c r}=\frac{\pi^{2} E l}{l^{2}}$ asymmetric solutions appear:

$$
X=C \sin k z ; k I=n \pi ; n=1, \ldots ; \quad k^{2}=F / E I
$$

They correspond to lower energy.

- What happened to the original symmetry?
- The ground state is degenerate.

SSB: Global Symmetries

An example from Classical Mechanics

- A symmetric solution always exists: $X=Y=0$
- For $F \geq F_{c r}=\frac{\pi^{2} E l}{l^{2}}$ asymmetric solutions appear:

$$
X=C \sin k z ; k I=n \pi ; n=1, \ldots ; \quad k^{2}=F / E I
$$

They correspond to lower energy.

- What happened to the original symmetry?
- The ground state is degenerate.
- The state is characterised by the two-component vector $\vec{\delta}=|\vec{\delta}| e^{i \theta}$
The modulus does have a physical meaning, the phase does not.

SSB: Global Symmetries

An example from Quantum Mechanics
The Heisenberg ferromagnet

Symmetry breaking $O(3) \rightarrow O(2)$

SSB: Global Symmetries

A field theory example

- $\mathcal{L}_{1}=\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi^{*}\right)-M^{2} \phi \phi^{*}-\lambda\left(\phi \phi^{*}\right)^{2}$

Invariant under $U(1)$ global transformations: $\phi(x) \rightarrow e^{i \theta} \phi(x)$

- The Hamiltonian is given by:

$$
\mathcal{H}_{1}=\left(\partial_{0} \phi\right)\left(\partial_{0} \phi^{*}\right)+\left(\partial_{i} \phi\right)\left(\partial_{i} \phi^{*}\right)+V(\phi)
$$

$V(\phi)=M^{2} \phi \phi^{*}+\lambda\left(\phi \phi^{*}\right)^{2}$

- The symmetric solution is $\phi(x)=0$.
- The minimum energy configuration corresponds to:
$\phi(x)=$ constant $=\phi$ such that $V(\phi)$ is minimum, solution of:
$V^{\prime}=0$

SSB: Global Symmetries

A field theory example

- The potential $V(\phi)$ with $\lambda>0$ and $M^{2} \geq 0$ (left).

The only solution is the symmetric one $\phi=0$.

- The potential $V(\phi)$ with $\lambda>0$ and $M^{2}<0$ (right).
$\phi=0$ is a local maximum. An entire circle of minima at the complex ϕ-plane with radius $v=\left(-M^{2} / 2 \lambda\right)^{1 / 2}$. Any point on it corresponds to a spontaneous breaking of the $U(1)$ symmetry

SSB: Global Symmetries

A field theory example

- Conclusion: $M^{2}=0$ is a critical point.

For $M^{2}>0$ the symmetric solution is stable.
For $M^{2}<0$ spontaneous symmetry breaking occurs.

SSB: Global Symmetries

A field theory example

- Conclusion: $M^{2}=0$ is a critical point.

For $M^{2}>0$ the symmetric solution is stable.
For $M^{2}<0$ spontaneous symmetry breaking occurs.

- In order to reach the stable solution we translate the field ϕ.

$$
\begin{aligned}
& \phi(x)=\frac{1}{\sqrt{2}}[v+\psi(x)+i \chi(x)] \\
& \begin{aligned}
\mathcal{L}_{1}(\phi) \rightarrow \mathcal{L}_{2}(\psi, \chi) & =\frac{1}{2}\left(\partial_{\mu} \psi\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \chi\right)^{2}-\frac{1}{2}\left(2 \lambda v^{2}\right) \psi^{2} \\
& -\lambda v \psi\left(\psi^{2}+\chi^{2}\right)-\frac{\lambda}{4}\left(\psi^{2}+\chi^{2}\right)^{2}
\end{aligned}
\end{aligned}
$$

SSB: Global Symmetries

A field theory example

- Conclusion: $M^{2}=0$ is a critical point.

For $M^{2}>0$ the symmetric solution is stable.
For $M^{2}<0$ spontaneous symmetry breaking occurs.

- In order to reach the stable solution we translate the field ϕ.

$$
\begin{aligned}
& \phi(x)=\frac{1}{\sqrt{2}}[v+\psi(x)+i \chi(x)] \\
& \begin{aligned}
\mathcal{L}_{1}(\phi) \rightarrow \mathcal{L}_{2}(\psi, \chi) & =\frac{1}{2}\left(\partial_{\mu} \psi\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \chi\right)^{2}-\frac{1}{2}\left(2 \lambda v^{2}\right) \psi^{2} \\
& -\lambda v \psi\left(\psi^{2}+\chi^{2}\right)-\frac{\lambda}{4}\left(\psi^{2}+\chi^{2}\right)^{2}
\end{aligned}
\end{aligned}
$$

- χ is massless (Goldstone mode).

SSB: Global Symmetries

A field theory example

- \mathcal{L}_{2} is still invariant.
$\delta \psi=-\theta \chi \quad ; \quad \delta \chi=\theta \psi+\theta v$
We still have a conserved current:

$$
\begin{aligned}
& j_{\mu} \sim \psi \partial_{\mu} \chi-\chi \partial_{\mu} \psi+v \partial_{\mu} \chi \\
& \partial^{\mu} j_{\mu}(x)=0
\end{aligned}
$$

It is the minimum energy configuration which is not invariant.

SSB: Global Symmetries

A field theory example

- \mathcal{L}_{2} is still invariant.
$\delta \psi=-\theta \chi \quad ; \quad \delta \chi=\theta \psi+\theta v$
We still have a conserved current:
$j_{\mu} \sim \psi \partial_{\mu} \chi-\chi \partial_{\mu} \psi+v \partial_{\mu} \chi$
$\partial^{\mu} j_{\mu}(x)=0$
It is the minimum energy configuration which is not invariant.
- Goldstone Theorem: Spontaneous breaking of a continuous symmetry \Rightarrow A massless particle
(Needs Lorentz invariance and positivity)

SSB: Gauge Symmetries

- Consider the gauge theory extension of the previous model:

$$
\mathcal{L}_{1}=-\frac{1}{4} F_{\mu \nu}^{2}+\left|\left(\partial_{\mu}+i e A_{\mu}\right) \phi\right|^{2}-M^{2} \phi \phi^{*}-\lambda\left(\phi \phi^{*}\right)^{2}
$$

\mathcal{L}_{1} is invariant under the gauge transformation:
$\phi(x) \rightarrow e^{i \theta(x)} \phi(x) \quad ; \quad A_{\mu} \quad \rightarrow \quad A_{\mu}-\frac{1}{e} \partial_{\mu} \theta(x)$

SSB: Gauge Symmetries

- Consider the gauge theory extension of the previous model:

$$
\mathcal{L}_{1}=-\frac{1}{4} F_{\mu \nu}^{2}+\left|\left(\partial_{\mu}+i e A_{\mu}\right) \phi\right|^{2}-M^{2} \phi \phi^{*}-\lambda\left(\phi \phi^{*}\right)^{2}
$$

\mathcal{L}_{1} is invariant under the gauge transformation:
$\phi(x) \rightarrow e^{i \theta(x)} \phi(x) \quad ; \quad A_{\mu} \quad \rightarrow \quad A_{\mu}-\frac{1}{e} \partial_{\mu} \theta(x)$

- Same analysis for $\lambda>0$ and $M^{2}<0$ yields:

$$
\begin{aligned}
\mathcal{L}_{1} \rightarrow \mathcal{L}_{2} & =-\frac{1}{4} F_{\mu \nu}^{2}+\frac{e^{2} v^{2}}{2} A_{\mu}^{2}+e v A_{\mu} \partial^{\mu} \chi \\
& +\frac{1}{2}\left(\partial_{\mu} \psi\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \chi\right)^{2}-\frac{1}{2}\left(2 \lambda v^{2}\right) \psi^{2}+\ldots
\end{aligned}
$$

SSB: Gauge Symmetries

- \mathcal{L}_{2} is invariant under the gauge transformation:

$$
\begin{aligned}
& \psi(x) \rightarrow \cos \theta(x)[\psi(x)+v]-\sin \theta(x) \chi(x)-v \\
& \chi(x) \rightarrow \cos \theta(x) \chi(x)+\sin \theta(x)[\psi(x)+v] \\
& A_{\mu} \rightarrow A_{\mu}-\frac{1}{e} \partial_{\mu} \theta(x)
\end{aligned}
$$

SSB: Gauge Symmetries

- \mathcal{L}_{2} is invariant under the gauge transformation:

$$
\begin{aligned}
& \psi(x) \rightarrow \cos \theta(x)[\psi(x)+v]-\sin \theta(x) \chi(x)-v \\
& \chi(x) \rightarrow \cos \theta(x) \chi(x)+\sin \theta(x)[\psi(x)+v] \\
& A_{\mu} \rightarrow A_{\mu}-\frac{1}{e} \partial_{\mu} \theta(x)
\end{aligned}
$$

- \mathcal{L}_{2} contains a term proportional to A^{2}. A massive photon??

SSB: Gauge Symmetries

- \mathcal{L}_{2} is invariant under the gauge transformation:

$$
\begin{aligned}
& \psi(x) \rightarrow \cos \theta(x)[\psi(x)+v]-\sin \theta(x) \chi(x)-v \\
& \chi(x) \rightarrow \cos \theta(x) \chi(x)+\sin \theta(x)[\psi(x)+v] \\
& A_{\mu} \rightarrow A_{\mu}-\frac{1}{e} \partial_{\mu} \theta(x)
\end{aligned}
$$

- \mathcal{L}_{2} contains a term proportional to A^{2}. A massive photon??
- Degrees of freedom:
$\mathcal{L}_{1}: 2+2=4$
$\mathcal{L}_{2}: 2+3=5$??
Notice the term ev $A_{\mu} \partial^{\mu} \chi$

SSB: Gauge Symmetries. Conclusions:

The Brout-Englert-Higgs Mechanism

- The vector bosons corresponding to spontaneously broken generators of a gauge group become massive.
- The corresponding Goldstone bosons decouple and disappear from the physical spectrum.
- Their degrees of freedom become the longitudinal components of the vector bosons.
- Gauge bosons corresponding to unbroken generators remain massless.
- There is always at least one physical, massive, scalar particle.

Robert Brout, François Englert, Peter Higgs
Brout died in 2011 and did not assist to the triumph of the theory he contributed to formulate.

The Standard Model: The full Lagrangian

$$
\begin{gathered}
\mathcal{L}=-\frac{1}{4} \vec{W}_{\mu \nu} \cdot \vec{W}^{\mu \nu}-\frac{1}{4} B_{\mu \nu} B^{\mu \nu}+\left|D_{\mu} \Phi\right|^{2}-V(\Phi) \\
+\sum_{i=1}^{3}\left[\bar{\Psi}_{L}^{i} i D \Psi_{L}^{i}+\bar{R}_{i} i D R_{i}-G_{i}\left(\bar{\Psi}_{L}^{i} R_{i} \Phi+\text { h.c. }\right)\right. \\
\left.+\bar{Q}_{L}^{i} i D Q_{L}^{i}+\bar{U}_{R}^{i} i D U_{R}^{i}+\bar{D}_{R}^{i} i D D_{R}^{i}+G_{u}^{i}\left(\bar{Q}_{L}^{i} U_{R}^{i} \tilde{\Phi}+\text { h.c. }\right)\right] \\
+\sum_{i, j=1}^{3}\left[\left(\bar{Q}_{L}^{i} G_{d}^{i j} D_{R}^{j} \Phi+\text { h.c. }\right)\right] \\
D_{\mu} Q_{L}^{i}=\left(\partial_{\mu}-i g \frac{\vec{\tau}}{2} \cdot \vec{W}_{\mu}-i \frac{g^{\prime}}{6} B_{\mu}\right) Q_{L}^{i} \\
D_{\mu} U_{R}^{i}=\left(\partial_{\mu}-i \frac{2 g^{\prime}}{3} B_{\mu}\right) U_{R}^{i} \\
D_{\mu} D_{R}^{i}=\left(\partial_{\mu}+i \frac{g^{\prime}}{3} B_{\mu}\right) D_{R}^{i}
\end{gathered}
$$

The Standard Model: Arbitrary parameters

- The two gauge coupling constants g and g^{\prime}.
- The two parameters of the scalar potential λ and μ^{2}.
- Three Yukawa coupling constants for the three lepton families, $G_{e, \mu, \tau} .\left(m_{\nu}=0\right)$.
- Six Yukawa coupling constants for the three quark families, $G_{u}^{u, c, t}$, and $G_{d}^{d, s, b}$.
- Four parameters of the $K M$ matrix, the three angles and the phase δ.
- All but two come from the scalar fields.

The Standard Model and experiment

The Standard Model and experiment

- The Standard Model has 17 arbitrary parameters.

They are related to masses and coupling constants and should be determined experimentally.

All have been measured.

The Standard Model and experiment

- The Standard Model has 17 arbitrary parameters.

They are related to masses and coupling constants and should be determined experimentally.

All have been measured.

- The Model gives a large number of predictions.

The Standard Model and experiment

- The Standard Model has 17 arbitrary parameters.

They are related to masses and coupling constants and should be determined experimentally.

All have been measured.

- The Model gives a large number of predictions.
- THE STANDARD MODEL HAS BEEN ENORMOUSLY SUCCESSFUL

$$
\begin{equation*}
\epsilon_{1}=\frac{3 G_{F} m_{t}^{2}}{8 \sqrt{2} \pi^{2}}-\frac{3 G_{F} m_{W}^{2}}{4 \sqrt{2} \pi^{2}} \tan ^{2} \theta_{W} \ln \frac{m_{H}}{m_{Z}}+\ldots \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\epsilon_{3}=\frac{G_{F} m_{W}^{2}}{12 \sqrt{2} \pi^{2}} \ln \frac{m_{H}}{m_{Z}}-\frac{G_{F} m_{W}^{2}}{6 \sqrt{2} \pi^{2}} \ln \frac{m_{t}}{m_{Z}}+\ldots \tag{2}
\end{equation*}
$$

The spectrum of hadrons, computed by lattice QCD simulations and compared with the experimental results.

The Standard Model and experiment

The precision of the measurements often led to successful predictions of new Physics.
The discovery of weak neutral currents by Gargamelle in 1972
$\nu_{\mu}+e^{-} \rightarrow \nu_{\mu}+e^{-} \quad ; \quad \nu_{\mu}+N \rightarrow \nu_{\mu}+X$
Both, their strength and their properties were predicted by the Model.

The Standard Model and experiment

The discovery of charmed particles at SLAC in 1974
Their presence was essential to ensure the absence of strangeness changing neutral currents, ex. $K^{0} \rightarrow \mu^{+}+\mu^{-}$

Their characteristic property is to decay predominantly in strange particles.

The Standard Model and experiment

- A necessary condition for the consistency of the Model is that $\sum_{i} Q_{i}=0$ inside each family.

When the τ lepton was discovered the b and t quarks were predicted with the right electric charges.

The Standard Model and experiment

- A necessary condition for the consistency of the Model is that $\sum_{i} Q_{i}=0$ inside each family.

When the τ lepton was discovered the b and t quarks were predicted with the right electric charges.

- The t-quark was seen at LEP through its effects in radiative corrections before its actual discovery at Fermilab.

The Standard Model and experiment

The discovery of the W and Z bosons at CERN in 1983
The characteristic relation of the Standard Model with an isodoublet BEH mechanism $m_{Z}=m_{W} / \cos \theta_{W}$ is checked with very high accuracy (including radiative corrections).

(a)

(b)

The Standard Model and experiment

The final touch: the discovery of the BEH scalar at CERN

The discovery of the BEH scalar in the decay modes 2γ (left) and $4 /$ (right). The figures include the data of $\sqrt{s}=13 \mathrm{TeV}$.

The Standard Model and experiment

The final touch: the discovery of the BEH scalar at CERN

Two beautiful events among those which established the discovery. The left figure shows a 2γ decay with two photons shown as green tracks in the electromagnetic calorimeter. The right figure shows an $e^{+} e^{-} \mu^{+} \mu^{-}$decay with the electrons as green tracks in the e.m. calorimeter and the muons as red tracks in the muon chambers.

Beyond the Standard Model

- Given this impressive success... What does Beyond mean?

Beyond the Standard Model

- Given this impressive success... What does Beyond mean?
- Or, What is wrong with the Standard Theory??

Beyond the Standard Model

- Given this impressive success... What does Beyond mean?
- Or, What is wrong with the Standard Theory??
- I. General questions

Beyond the Standard Model

- Given this impressive success... What does Beyond mean?
- Or, What is wrong with the Standard Theory??
- I. General questions
- II. Specific points

High precision measurements

Anomalous magnetic moment of the muon

Long-standing discrepancy with the SM

High precision measurements

Arduous computation of ever more precise SM prediction

Heavy flavour decays

LEPTON FLAVOUR UNIVERSALITY VIOLATION?

Heavy flavour decays

Flavour changing neutral currents

$$
B_{d}^{0} \rightarrow K^{*} \mu^{+} \mu^{-} \text {results }
$$

- Several observables appear different than SM
- In particular P_{5}^{\prime} has significant discrepancy
- Global fits show large disagreement

Heavy flavour decays

Summary of B anomalies
Liverpool
Are we there yet?

1. Low $b \rightarrow s \mu \mu$ branching fractions
2. Discrepancies in angular observables of $B_{d}^{0} \rightarrow K^{*} \mu^{+} \mu^{-}$
3. Signs of lepton non-universality in: $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$and $B_{d}^{0} \rightarrow K^{*} \mu^{+} \mu^{-}$

- All seems to be related to a change in the C_{9} coefficient (or maybe C_{9} and C_{10}, but V-A)
- Global fits start to exhibit several standard deviations of discrepancy
- $c \bar{c}$ interference explanation seems not justified
- Additional discrepancies in tree-level $B \rightarrow D^{(*)} \ell \nu$ decays
- Many NP explanations: Z^{\prime}, leptoquarks, low mass resonances etc

Dark matter

Large mass range for DM candidates

- bosonic DM produced during inflation or high temp phase transition
- DM acts as oscillating classical field
- WIMPs: act through SM forces
- Hidden Sector: act through new force, very weakly coupled to SM
- Thermal contact in early universe

Beyond WIMPS: novel, low-cost, search techniques

Neutrino masses and oscillations

For years we thought that:

- There are three distinct neutrinos.
(i) The absence of $\mu \rightarrow e+\gamma$ shows that e.m. interactions conserve lepton numbers.
(ii) Schwinger postulated $\nu_{\mu} \neq \nu_{e}$.
(iii) Feinberg made it more precise:

- LEP confirmed that there are three distinct light neutrinos.

Neutrino masses and oscillations

We also thought that all neutrinos were massless

- A totally unexplained degeneracy
(i) In Nature only CPT related states, i.e. particle-anti-particle, are known to be degenerate. Neutrinos were the exception.
(ii) Each neutrino carried a separate lepton number, but this was only measurable dynamically.
- Attempts to make at least one of the neutrinos a Goldstone fermion failed. (No Adler's decoupling.)
- The discovery that neutrinos have different masses solved this conceptual degeneracy problem.
- But created another one: Why the masses are so small?
- Neutrino physics as a portal to Physics Beyond the Standard Model.

Neutrino masses and oscillations

Neutrino Physics

Fundamental Questions addressed by Diverse Neutrino Program

- What is the origin of neutrino mass?
- How are the neutrino masses ordered?
- Oscillation experiments
- What is the absolute neutrino mass scale?
- Beta-decay spectrum
- Cosmic surveys
- Do neutrinos and anti-neutrinos oscillate differently?
- Oscillation experiments
- Are there additional neutrino types and interactions?
- Oscillation experiments
- Cosmic surveys
- Are neutrinos their own anti-particles?
- Neutrinoless double-beta decay

Neutrino masses and oscillations

My conclusion :

- A data-driven subject in which theorists have not played the major role.
- Substantial improvement in precision could be expected during the coming years.
- The significance of such improvements is not easy to judge.
- So far no real illumination came from leptons to be combined with the quark sector for a more complete theory of flavour

The trouble is that I do not see how this could change!

More general questions

More general questions

- Why three families

More general questions

- Why three families
- Why $U(1) \times S U(2) \times S U(3)$

More general questions

- Why three families
- Why $U(1) \times S U(2) \times S U(3)$
- Why so many mass scales

More general questions

- Why three families
- Why $U(1) \times S U(2) \times S U(3)$
- Why so many mass scales
- Hierarchy and fine tuning

More general questions

- Why three families
- Why $U(1) \times S U(2) \times S U(3)$
- Why so many mass scales
- Hierarchy and fine tuning
- Unification

More general questions

- Why three families
- Why $U(1) \times S U(2) \times S U(3)$
- Why so many mass scales
- Hierarchy and fine tuning
- Unification
- Quantum gravity

More general questions

- Why three families
- Why $U(1) \times S U(2) \times S U(3)$
- Why so many mass scales
- Hierarchy and fine tuning
- Unification
- Quantum gravity
- Many others you can add

Conclusions

Conclusions

- No coherent picture emerges

Conclusions

- No coherent picture emerges
- We were expecting new physics to be around the corner..... But we see no corner

Conclusions

- No coherent picture emerges
- We were expecting new physics to be around the corner..... But we see no corner
- The easy answer: We need more data

Conclusions

- No coherent picture emerges
- We were expecting new physics to be around the corner..... But we see no corner
- The easy answer: We need more data
- Two problems: (i) We do not know what kind of data
(ii) They will not come for quite a long time

Conclusions

- No coherent picture emerges
- We were expecting new physics to be around the corner..... But we see no corner
- The easy answer: We need more data
- Two problems: (i) We do not know what kind of data
(ii) They will not come for quite a long time
- A rather frustrating problem!

My Conclusions

My Conclusions

- The Future of Particle Physics will undoubtedly be bright, but....

My Conclusions

- The Future of Particle Physics will undoubtedly be bright, but....
- I will not learn the answer

My Conclusions

- The Future of Particle Physics will undoubtedly be bright, but....
- I will not learn the answer
- We have a very successful Standard Theory and we will leave the problem of its completion to the younger generation.....

