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PART I: Motivations
Consider a system with characteristic mass M 
and size L.

It is not fundamental in characterizing a 
gravitational field in Einstein’s theory. 
Indeed, the Einstein field equation are written 
in terms of the Ricci scalar and the Ricci 
tensor all of which measure the curvature of 
the field and not its potential.

The parameter     is very useful in defining the 
validity of the Newtonian approximation.
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where η ¼ m1m2=m2 is the symmetric mass ratio. For a
binary system, this quantity is exactly the same as Φ= _Φ and
(up to factors of order unity)R= _R. Thus, T is a measure of
how long it takes the system, and in particular the
gravitational field and the curvature, to change appreciably.
GW150914 and GW151226 land in the top left region of
the left panel of Fig. 3, at least 4 orders of magnitude away
from the double binary pulsar. The Shapiro time delay and
Cassini observation do not appear in this figure, as they do
not sample the dynamical sector of GR. For the GWevents,
how rapidly the curvature and the potential sweep through
the detector’s sensitivity band is shown on the right panel
of Fig. 3.

B. GW model in GR and outside GR

1. IMRPhenom model in GR

The LVC employed two main waveform models (both
calculated within GR) to reconstruct the signal [4,134].
One of these, the so-called IMRPhenom model [89–93],
was heavily used to validate GR in [5,19]. In particular,
the LVC employed the most recent IMRPhenom model
(PhenomPv2), which is a modified version of PhenomD
[92,93] that includes precession by rotating a spin-aligned
waveform to a precessing frame [135]. In this paper, we

will use the PhenomD model and ignore precession
effects.9 The differences in the constraints on non-GR
effects obtained with an older version of the IMRPhenom
model (PhenomB [90]) and PhenomD waveforms are
discussed in Appendix A. This Appendix also provides
a rough estimate of the impact of mismodeling error in tests
of GR, showing that this error does not affect tests for the
modified gravity effects considered here using events
GW150914 and GW151226.
Let us then briefly summarize the PhenomD model of

[93]. This phenomenological approach models the Fourier
transform of the response function as a piecewise function
with three distinct pieces or phases, where each phase i
takes the following form:

~hiðfÞ ¼ AiðfÞeiΦiðfÞ: ð1Þ

The three phases that are distinguished are the inspiral, an
intermediate phase and the merger-ringdown phase. In the
inspiral phase, the waveform is modeled as follows. The
amplitude is treated in PN theory, including terms up to
3PN order that are known analytically, and higher-order
functionals (up to 4.5PN order) fitted to numerical simu-
lations. In particular, the early-inspiral part of the phase is
simply given by
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FIG. 2. Schematic diagram of the curvature-potential phase
space sampled by various experiments that test GR. The vertical
axis shows the inverse of the characteristic curvature length scale,
while the horizontal axis shows the characteristic gravitational
potential, based on Table II. GW150914 and GW151226 sample
a regime where the curvature and the potential are both simulta-
neously large and dynamical, indicated here by the finite range
the curves sweep in the figure. The finite area of pulsar timing
arrays is due to the range in the GW frequency and the total mass
of supermassive BH binaries that such arrays may detect in the
future. Figure 3 is a companion plot that illustrates the dynamical
aspects of gravity probed by these experiments; the lighter (blue)
dots here are to indicate that the Shapiro time delay from binary
pulsars and the Cassini satellite do not give information on the
dynamical regime.

TABLE II. The characteristic mass and length scale chosen to
compute the characteristic curvature and potential in Fig. 2. For
GW150914, GW151226 and pulsar timing arrays, we extract the
length scale from the observed frequency via L ¼ ½M=ðπfÞ2%1=3,
where for the former two we choose f ¼ 20 Hz up to contact,
while for the latter we choose f ¼ 3 × 10−9–5 × 10−7 Hz. The
length scale for the binary pulsar Shapiro delay corresponds to the
sum of the minimum impact parameter with an inclination of
89.3° (∼9800 km) and the effect of lensing (∼600 km) of the
double binary pulsar PSR J0737-3039 [130].

M L

GW150914 [1,4,5] 65.3M⊙ 190–1300 km
GW151226 [2,5] 21.7M⊙ 64–900 km
Pulsar timing arrays [131] 106–109M⊙ 109.6–1012 km
Bin. pulsar (Shapiro delay) [130] 1.34M⊙ 1.04×104 km
Bin. pulsar (orbital decay) [129] 2.59M⊙ 8.7 × 105km
LAGEOS [123] 1M⊕ 1.9R⊕

Lunar laser ranging [132] 1M⊕ 3.8×105 km
Cassini [124] 1M⊙ 1.6R⊙
Pericenter precession of Mercury
[7,133]

1M⊙ 5.8×107 km

9The LVC was unable to precisely extract the individual spin
components of each BH binary prior to coalescence for either
event nor the spin parameter combination that characterizes the
amount of precession [2,4,5,136].

YUNES, YAGI, and PRETORIUS PHYSICAL REVIEW D 94, 084002 (2016)

084002-8

From: N. Yunes, K. Yagi and F. Pretorius,
           Phys. Rev. D 94, no. 8, 084002 (2016)
           [arXiv:1603.08955]



Inspiral phase: The 
compact objects are 
well separated with 
respect to the total 
mass.
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Plunge & merger: 
The compact 
objects are very 
close to each other 
and velocities 
approach the speed 
of light. The two 
objects coalesce.
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Ringdown: The 
highly distorted 
remnant formed 
after merger 
oscillates, radiating 
away any 
deformations and 
relaxes to a 
stationary state.

This classification is 
clean in concept, 
and applies to both BH-BH 
and NS-NS merger.
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Figure 1. Schematic diagram of the evolution of compact binary coalescences. The
frequency of the emitted GW is indicated for the di↵erent stages. NS-NS inspirals are
observable for a few seconds to minutes. Upon the merger of the NSs, a binary with
total mass Mbinary & 3M� promptly collapses into a BH. For non-equal-mass binaries,
the forming BH will be surrounded by an accretion disk. NS-NS binaries with total
mass MNS,max < Mbinary < 3M� (where MNS,max is the mass limit of non-rotating
NSs) form a hypermassive NS with strong di↵erential rotation, which assumes a non-
axisymmetric ellipsoid shape. The hypermassive NS survives for milliseconds to a
second, eventually collapsing into a BH, potentially with an accretion disk. Very low
mass NS-NS binaries (Mbinary < MNS,max) can leave a stable NS behind. For BH-NS

binaries, after an inspiral phase observable for seconds to minutes, the NS either gets
tidally disrupted (if tidal disruption at radius Rtidal occurs before the NS could reach
the ISCO at RISCO), or it plunges into the BH (if Rtidal < RISCO). Tidal disruption
results in a BH with an accretion disk, while no accretion disk forms upon plunge. This
merger phase, along with the ringdown of the BH after plunge, lasts for milliseconds.

location and inclination of the sources is ⇠ 4⇡(D
h

/2.26)3/3 [46]. Using the current best-

guess rates of mergers, this gives tens of NS-NS and a few NS-BH binaries detected with

advanced detectors each year [46]. Additional advanced detectors, such as KAGRA [6]

or LIGO India [64], can significantly increase this range [9]. Third generation detectors

are expected to reach an order of magnitude farther than advanced detectors, i.e. to

several Gpc, and hence will be able to observe tens of thousands of events a year (e.g.,

[65]).

2.1.2. Merger phase — Depending on the binary system, the merger can progress in

multiple distinct directions with qualitatively di↵erent GW and gamma-ray emission.

From: I. Bartos, P. Brady and S. Marka,
           Class. Quant. Grav. 30, 123001 (2013)
           [arXiv:1212.2289]
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guess rates of mergers, this gives tens of NS-NS and a few NS-BH binaries detected with

advanced detectors each year [46]. Additional advanced detectors, such as KAGRA [6]

or LIGO India [64], can significantly increase this range [9]. Third generation detectors

are expected to reach an order of magnitude farther than advanced detectors, i.e. to

several Gpc, and hence will be able to observe tens of thousands of events a year (e.g.,

[65]).

2.1.2. Merger phase — Depending on the binary system, the merger can progress in

multiple distinct directions with qualitatively di↵erent GW and gamma-ray emission.

From: I. Bartos, P. Brady and S. Marka,
           Class. Quant. Grav. 30, 123001 (2013)
           [arXiv:1212.2289]
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What we can learn 
from gravitational waves?



• Transitions between levels

• Annihilations to gravitons

• Signals coherent, monochromatic, last hours 
to millions of years

Gravitational Wave Signals

39Black hole as “particle detector”
GW as a probe for new light and weakly-coupled 
(dark) particles The condensate is dissipated through the 

emission of GWs (with frequency set by 
the scalar field mass)

M ≈ 6.7 ( 10−12 eV
m ) M⊙

m
10−12 eV

≃ 240 Hz
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m
10−12 eV

≃ 240 HzM ≈ 6.7 ( 10−12 eV
m ) M⊙

2

instability, which leads the BH from an initial state (Mi, Ji)
to a final state (M, J), and we thus compute the root-mean-
square strain amplitude h using the final BH parameters. By
averaging over source and detector orientations we get

h =

r
2

5⇡

GM

c2r

✓
MS

M

◆
A(�, fsM) , (3)

where r is the (comoving) distance to the source, the masses
are in the source frame, and the dimensionless function
A(�, fsM) is computed from BH perturbation theory [40,
42]. Our results are more accurate than the analytic approxi-
mations of [35, 36]. It can be shown that MS scales linearly
with Ji [40], so h also grows with Ji. For LISA, we also
take into account correction factors due to the detector ge-
ometry [43]. In the detector frame, Eq. (3) still holds if the
masses M and MS are multiplied by (1 + z), r is replaced
by the luminosity distance, and the frequency is replaced by
the detector-frame frequency f = fs/(1 + z). Nevertheless,
one needs to use detector-frame frequencies when comparing
to the detector sensitivity.

In semicoherent searches of monochromatic sources, the
signal is divided in N coherent segments of time length Tcoh,
and we have hthr ' 25N�1/4

p
Sh(f)/Tcoh, where hthr is

the minimum root-mean-square strain amplitude detectable
over the observation time N ⇥ Tcoh [44], and Sh(f) is the
noise power spectral density (PSD) at f [45].

In Fig. 1 we compare the GW strain of Eq. (3) with the
PSDs of LISA and Advanced LIGO at design sensitivity. The
GW strain increases almost vertically as a function of !R ' µ
in the superradiant range (0,⌦H). Thin solid curves corre-
spond to the stochastic background from the whole BH popu-
lation, for a boson mass ms. This background produces itself
a “confusion noise” when ms ⇡ [10

�18, 10�16
] eV, compli-

cating the detection of individual sources. Figure 1 suggests
that bosons with masses 10

�19
eV . ms . 10

�11
eV (with

a small gap around ms ⇠ 10

�14 eV, which might be filled
by DECIGO [46]) could be detectable by LIGO and LISA.
Below we quantify this expectation.
BH population models. Assessing the detectability of these
signals requires astrophysical models for BH populations. For
LISA sources, the main uncertainties concern the mass and
spin distribution of isolated BHs, the model for their high-
redshift seeds, and their accretion and merger history. We
adopt the same populations of [48, 49], which were based on
the semianalytic galaxy formation calculations of [50] (see
also [51–53]). In our optimistic model, we use these cal-
culations to infer the redshift-dependent BH number density
d2n/(d log10 Md�). The spin distribution is skewed toward
�i ⇠ 1, at least at low masses [51]. We also adopt less op-
timistic and pessimistic models with mass function given by
Eqs. (5) and (6) of [49] for z < 3 and 10

4M� < M <
10

7M�, whereas for M > 10

7M� we use a mass distribu-
tion with normalization 10 and 100 times lower than the opti-
mistic one. In both the less optimistic and pessimistic models
we assume a uniform spin distribution in the range �i 2 [0, 1].

��-���-���-���-���-� ��� ��� ��� ��� ���
��-��
��-��
��-��
��-��
��-��
��-��
��-��

FIG. 1. GW strain produced by BH-boson condensates compared to
the Advanced LIGO PSD at design sensitivity [47] and to the non-sky
averaged LISA PSD [12] (black thick curves), assuming a coherent
observation time of T

obs

= 4yr in both cases. Nearly vertical lines
represent BHs with initial spin �i = 0.9. Each line corresponds to
a single source at redshift z 2 (0.001, 3.001) (from right to left, in
steps of �z = 0.2), and different colors correspond to different boson
masses ms. Thin lines show the stochastic background produced by
the whole population of astrophysical BHs under optimistic assump-
tions (cf. main text for details). The PSD of DECIGO [46] (dashed
line) is also shown for reference.

The LIGO stochastic GW background comes mostly from
extra-galactic stellar-mass BHs, which were ignored in previ-
ous work [37]. Here we model these sources using the semi-
analytic galaxy evolution model of [54]. The BH formation
rate as a function of mass and redshift reads

dṅeg

dM
=

Z
dM? [t� ⌧(M?)]�(M?)�[M? � g�1

(M)] ,

(4)
where ⌧(M?) is the lifetime of a star of mass M?, �(M?)

is the stellar initial mass function,  (t) is the cosmic star for-
mation rate (SFR) density and � is the Dirac delta. We fit the
cosmic SFR as described in [55] and calibrate it to observa-
tions of luminous galaxies [56, 57]. We assume a Salpeter
initial mass function �(M?) / M?

�2.35 [58] in the range
M? 2 [0.1 � 100]M�, and take stellar lifetimes from [59].
We also follow the production of metals by stars [60] and the
resulting enrichment of the interstellar medium, which affects
the metallicity of subsequent stellar generations. The func-
tion g(M?) relates the initial stellar mass M? and the BH
mass M , and encodes the BH formation process. In general,
the mass of the BH formed from a star with initial mass M?

depends on the stellar metallicity [61] and rotational velocity
[62], as well as interactions with its companion if the star be-
longs to a binary system. We assume that all stellar-mass BHs
are produced from isolated massive stars after core collapse,
and calculate the BH mass for a given M? and metallicity us-
ing the analytic fits for the “delayed” model of [63]. Through
the metallicity, the function M = g(M?) is implicitly a func-
tion of redshift. Since this model does not predict the initial
BH spins, we assume a uniform distribution and explore dif-
ferent ranges: �i 2 [0.8, 1], [0.5, 1], [0, 1] and [0, 0.5].

From: R. Brito et al.,
           Phys. Rev. Lett. 119, no. 13, 131101 (2017)
           [arXiv:1706.05097]
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The details of the 
NS internal 
structure (and 
hence its EoS) 
become important 
as the orbital 
separation 
approaches the 
size of the bodies



Scattering amplitude
Challenge: two-body problem in General Relativity

Post-newtonian expansion: expansion in v/c



“Gravity is the weakest    
force in Nature.”

What we can learn 
from gravitational waves?
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ω
ω =

GN(M1 + M2)
r3

dEtot

dt
= − 𝒫GW

Etot = −
GNμ(M1 + M2)

r
+

1
2

μr2ω2

𝒫GW =
32GNμ2ω6r4
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(M1M2)3/5
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ω

dω
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=
96
5 (GNMC)5/3 ω11/3

∼100 s (calculated starting from 24 Hz) in the detectors’
sensitive band, the inspiral signal ended at 12∶41:04.4 UTC.
In addition, a γ-ray burst was observed 1.7 s after the
coalescence time [39–45]. The combination of data from
the LIGO and Virgo detectors allowed a precise sky
position localization to an area of 28 deg2. This measure-
ment enabled an electromagnetic follow-up campaign that
identified a counterpart near the galaxy NGC 4993, con-
sistent with the localization and distance inferred from
gravitational-wave data [46–50].
From the gravitational-wave signal, the best measured

combination of the masses is the chirp mass [51]
M ¼ 1.188þ0.004

−0.002M⊙. From the union of 90% credible
intervals obtained using different waveform models (see
Sec. IV for details), the total mass of the system is between
2.73 and 3.29 M⊙. The individual masses are in the broad
range of 0.86 to 2.26 M⊙, due to correlations between their
uncertainties. This suggests a BNS as the source of the
gravitational-wave signal, as the total masses of known
BNS systems are between 2.57 and 2.88 M⊙ with compo-
nents between 1.17 and ∼1.6 M⊙ [52]. Neutron stars in
general have precisely measured masses as large as 2.01#
0.04 M⊙ [53], whereas stellar-mass black holes found in
binaries in our galaxy have masses substantially greater
than the components of GW170817 [54–56].
Gravitational-wave observations alone are able to mea-

sure the masses of the two objects and set a lower limit on
their compactness, but the results presented here do not
exclude objects more compact than neutron stars such as
quark stars, black holes, or more exotic objects [57–61].
The detection of GRB 170817A and subsequent electro-
magnetic emission demonstrates the presence of matter.
Moreover, although a neutron star–black hole system is not
ruled out, the consistency of the mass estimates with the
dynamically measured masses of known neutron stars in
binaries, and their inconsistency with the masses of known
black holes in galactic binary systems, suggests the source
was composed of two neutron stars.

II. DATA

At the time of GW170817, the Advanced LIGO detec-
tors and the Advanced Virgo detector were in observing
mode. The maximum distances at which the LIGO-
Livingston and LIGO-Hanford detectors could detect a
BNS system (SNR ¼ 8), known as the detector horizon
[32,62,63], were 218 Mpc and 107 Mpc, while for Virgo
the horizon was 58 Mpc. The GEO600 detector [64] was
also operating at the time, but its sensitivity was insufficient
to contribute to the analysis of the inspiral. The configu-
ration of the detectors at the time of GW170817 is
summarized in [29].
A time-frequency representation [65] of the data from

all three detectors around the time of the signal is shown in
Fig 1. The signal is clearly visible in the LIGO-Hanford
and LIGO-Livingston data. The signal is not visible

in the Virgo data due to the lower BNS horizon and the
direction of the source with respect to the detector’s antenna
pattern.
Figure 1 illustrates the data as they were analyzed to

determine astrophysical source properties. After data col-
lection, several independently measured terrestrial contribu-
tions to the detector noise were subtracted from the LIGO
data usingWiener filtering [66], as described in [67–70]. This
subtraction removed calibration lines and 60 Hz ac power
mains harmonics from both LIGO data streams. The sensi-
tivity of the LIGO-Hanford detector was particularly
improved by the subtraction of laser pointing noise; several
broad peaks in the 150–800 Hz region were effectively
removed, increasing the BNS horizon of that detector
by 26%.

FIG. 1. Time-frequency representations [65] of data containing
the gravitational-wave event GW170817, observed by the LIGO-
Hanford (top), LIGO-Livingston (middle), and Virgo (bottom)
detectors. Times are shown relative to August 17, 2017 12∶41:04
UTC. The amplitude scale in each detector is normalized to that
detector’s noise amplitude spectral density. In the LIGO data,
independently observable noise sources and a glitch that occurred
in the LIGO-Livingston detector have been subtracted, as
described in the text. This noise mitigation is the same as that
used for the results presented in Sec. IV.
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∼100 s (calculated starting from 24 Hz) in the detectors’
sensitive band, the inspiral signal ended at 12∶41:04.4 UTC.
In addition, a γ-ray burst was observed 1.7 s after the
coalescence time [39–45]. The combination of data from
the LIGO and Virgo detectors allowed a precise sky
position localization to an area of 28 deg2. This measure-
ment enabled an electromagnetic follow-up campaign that
identified a counterpart near the galaxy NGC 4993, con-
sistent with the localization and distance inferred from
gravitational-wave data [46–50].
From the gravitational-wave signal, the best measured

combination of the masses is the chirp mass [51]
M ¼ 1.188þ0.004

−0.002M⊙. From the union of 90% credible
intervals obtained using different waveform models (see
Sec. IV for details), the total mass of the system is between
2.73 and 3.29 M⊙. The individual masses are in the broad
range of 0.86 to 2.26 M⊙, due to correlations between their
uncertainties. This suggests a BNS as the source of the
gravitational-wave signal, as the total masses of known
BNS systems are between 2.57 and 2.88 M⊙ with compo-
nents between 1.17 and ∼1.6 M⊙ [52]. Neutron stars in
general have precisely measured masses as large as 2.01#
0.04 M⊙ [53], whereas stellar-mass black holes found in
binaries in our galaxy have masses substantially greater
than the components of GW170817 [54–56].
Gravitational-wave observations alone are able to mea-

sure the masses of the two objects and set a lower limit on
their compactness, but the results presented here do not
exclude objects more compact than neutron stars such as
quark stars, black holes, or more exotic objects [57–61].
The detection of GRB 170817A and subsequent electro-
magnetic emission demonstrates the presence of matter.
Moreover, although a neutron star–black hole system is not
ruled out, the consistency of the mass estimates with the
dynamically measured masses of known neutron stars in
binaries, and their inconsistency with the masses of known
black holes in galactic binary systems, suggests the source
was composed of two neutron stars.

II. DATA

At the time of GW170817, the Advanced LIGO detec-
tors and the Advanced Virgo detector were in observing
mode. The maximum distances at which the LIGO-
Livingston and LIGO-Hanford detectors could detect a
BNS system (SNR ¼ 8), known as the detector horizon
[32,62,63], were 218 Mpc and 107 Mpc, while for Virgo
the horizon was 58 Mpc. The GEO600 detector [64] was
also operating at the time, but its sensitivity was insufficient
to contribute to the analysis of the inspiral. The configu-
ration of the detectors at the time of GW170817 is
summarized in [29].
A time-frequency representation [65] of the data from

all three detectors around the time of the signal is shown in
Fig 1. The signal is clearly visible in the LIGO-Hanford
and LIGO-Livingston data. The signal is not visible

in the Virgo data due to the lower BNS horizon and the
direction of the source with respect to the detector’s antenna
pattern.
Figure 1 illustrates the data as they were analyzed to

determine astrophysical source properties. After data col-
lection, several independently measured terrestrial contribu-
tions to the detector noise were subtracted from the LIGO
data usingWiener filtering [66], as described in [67–70]. This
subtraction removed calibration lines and 60 Hz ac power
mains harmonics from both LIGO data streams. The sensi-
tivity of the LIGO-Hanford detector was particularly
improved by the subtraction of laser pointing noise; several
broad peaks in the 150–800 Hz region were effectively
removed, increasing the BNS horizon of that detector
by 26%.

FIG. 1. Time-frequency representations [65] of data containing
the gravitational-wave event GW170817, observed by the LIGO-
Hanford (top), LIGO-Livingston (middle), and Virgo (bottom)
detectors. Times are shown relative to August 17, 2017 12∶41:04
UTC. The amplitude scale in each detector is normalized to that
detector’s noise amplitude spectral density. In the LIGO data,
independently observable noise sources and a glitch that occurred
in the LIGO-Livingston detector have been subtracted, as
described in the text. This noise mitigation is the same as that
used for the results presented in Sec. IV.
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From M and q, we obtain a measure of the component
masses m1 ∈ ð1.36; 2.26ÞM⊙ and m2 ∈ ð0.86; 1.36ÞM⊙,
shown in Fig. 4. As discussed in Sec. I, these values are
within the range of known neutron-star masses and below
those of known black holes. In combination with electro-
magnetic observations, we regard this as evidence of the
BNS nature of GW170817.
The fastest-spinning known neutron star has a dimension-

less spin≲0.4 [153], and the possible BNS J1807-2500B has
spin≲0.2 [154], after allowing for a broad range of equations
of state. However, among BNS that will merge within a
Hubble time, PSR J0737-3039A [155] has the most extreme
spin, less than ∼0.04 after spin-down is extrapolated to
merger. If we restrict the spin magnitude in our analysis to
jχj ≤ 0.05, consistent with the observed population, we
recover the mass ratio q ∈ ð0.7; 1.0Þ and component masses
m1 ∈ ð1.36;1.60ÞM⊙ andm2 ∈ ð1.17; 1.36ÞM⊙ (see Fig. 4).
We also recover χeff ∈ ð−0.01; 0.02Þ, where the upper limit
is consistent with the low-spin prior.
Our first analysis allows the tidal deformabilities of the

high-mass and low-mass component, Λ1 and Λ2, to vary
independently. Figure 5 shows the resulting 90% and
50% contours on the posterior distribution with the
post-Newtonian waveform model for the high-spin and

low-spin priors. As a comparison, we show predictions
coming from a set of candidate equations of state for
neutron-star matter [156–160], generated using fits from
[161]. All EOS support masses of 2.01# 0.04M⊙.
Assuming that both components are neutron stars described
by the same equation of state, a single function ΛðmÞ is
computed from the static l ¼ 2 perturbation of a Tolman-
Oppenheimer-Volkoff solution [103]. The shaded regions in
Fig. 5 represent the values of the tidal deformabilitiesΛ1 and
Λ2 generated using an equation of state from the 90% most
probable fraction of the values ofm1 andm2, consistent with
the posterior shown in Fig. 4. We find that our constraints on
Λ1 and Λ2 disfavor equations of state that predict less
compact stars, since the mass range we recover generates
Λ values outside the 90% probability region. This is con-
sistent with radius constraints from x-ray observations of
neutron stars [162–166]. Analysis methods, in development,
that a priori assume the same EOS governs both stars should
improve our constraints [167].
To leading order in Λ1 and Λ2, the gravitational-wave

phase is determined by the parameter

~Λ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
ð1Þ

[101,117]. Assuming a uniform prior on ~Λ, we place a 90%
upper limit of ~Λ ≤ 800 in the low-spin case and ~Λ ≤ 700 in
the high-spin case. We can also constrain the functionΛðmÞ
more directly by expanding ΛðmÞ linearly about m ¼
1.4M⊙ (as in [112,115]), which gives Λð1.4M⊙Þ ≤ 1400
for the high-spin prior and Λð1.4M⊙Þ ≤ 800 for the low-
spin prior. A 95% upper bound inferred with the low-spin
prior, Λð1.4M⊙Þ ≤ 970, begins to compete with the 95%
upper bound of 1000 derived from x-ray observations
in [168].
Since the energy emitted in gravitational waves depends

critically on the EOS of neutron-star matter, with a wide
range consistent with constraints above, we are only able to
place a lower bound on the energy emitted before the onset
of strong tidal effects at fGW∼600Hz asErad > 0.025M⊙c2.
This is consistent with Erad obtained from numerical
simulations and fits for BNS systems consistent with
GW170817 [114,169–171].
We estimate systematic errors from waveform modeling

by comparing the post-Newtonian results with parameters
recovered using an effective-one-body model [124] aug-
mented with tidal effects extracted from numerical relativity
with hydrodynamics [172]. This does not change the
90% credible intervals for component masses and effective
spin under low-spin priors, but in the case of high-spin priors,
we obtain the more restrictive m1 ∈ ð1.36; 1.93ÞM⊙, m2 ∈
ð0.99; 1.36ÞM⊙, and χeff ∈ ð0.0; 0.09Þ. Recovered tidal
deformabilities indicate shifts in the posterior distributions
towards smaller values, with upper bounds for ~Λ and
Λð1.4M⊙Þ reduced by a factor of roughly (0.8, 0.8) in the

FIG. 4. Two-dimensional posterior distribution for the compo-
nent massesm1 andm2 in the rest frame of the source for the low-
spin scenario (jχj < 0.05, blue) and the high-spin scenario
(jχj < 0.89, red). The colored contours enclose 90% of the
probability from the joint posterior probability density function
for m1 and m2. The shape of the two dimensional posterior is
determined by a line of constant M and its width is determined
by the uncertainty inM. The widths of the marginal distributions
(shown on axes, dashed lines enclose 90% probability away from
equal mass of 1.36M⊙) is strongly affected by the choice of spin
priors. The result using the low-spin prior (blue) is consistent with
the masses of all known binary neutron star systems.
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by the total momentum divided by 
the total mass. 
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Consider a space 
that consists of a 
long, thin tube. 
Viewed from far 
distance, the tube 
looks like a one-
dimensional line. 
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Under high 
magnification, the 
cylindrical shape 
becomes apparent. 
Each point on the 
line is revealed to 
be a one-
dimensional circle 
of the tube. 
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4D

Our world has six extra dimensions, 
every point of our familiar space 
hides an associated tiny six-
dimensional space. The physics that 
is observed depends on the size and 
the structure of the manifold.
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There must exist at least one state 
with charge qe larger than its mass 
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Weak Gravity Conjecture 
There must exist at least one state 
with charge qe larger than its mass 
m in Planck units 

qe >
m
MP

“Gravity is the weakest    
force in Nature.”

It is tempting to generalize it…
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A new era has begun
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Bonus Materialn → QU + QD + QD

937.900 MeV
decay of 9Be closed

< 2mD + mU < mn = 939.565 MeV

decay kin. open

In the previous example in section 1.1, we computed the radius of the neutron star as
the radial distance r = R from the center of spherical symmetry at which pn(R) = 0.
In this case the situation is a bit more involved. For each set of initial Fermi momenta
{pn(0), pD(0), pU(0)}, we compute the three radial distances Ri=n,D,U defined by ni(Ri) = 0
(equivalently, pi(Ri) = 0). Consequently, we can compute the number of particles

Ni = 4fi
⁄ Ri

0
drr2ni(r)

Ò
A(r) = 4

3fi~3

⁄ Ri

0
drr2p3

i

Ò
A(r) , i = n, D, U . (83)

Charge conservation implies ND = 2NU , and the choice of the initial values pD(0) and pU(0)
is, therefore, subject to this constraint. Furthermore, this number is controlled by the total
number of particles generated by means of the invisible neutron decay. For instance, in case
i) we expect ND = 2NU ≥ 1037.
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