

Superinsulators : a new state of matter with hadrons made of Cooper pairs

Carlo A. Trugenberger

Work with C. Diamantini, P. Sodano, V. Vinokur and L. Gammaitoni over 22 years

What is a superinsulator

't Hooft 1978 (Nucl. Phys. B138 (1978) 1 on confinement)

"....absolute confinement is realized in a phase which is in many respects similar to the superconducting phase. In a certain sense it is the extreme opposite ("superinsulator")"

M. C. Diamantini, P. Sodano & C. A. T. 1996 Nucl. Phys. B474 (1996) 641

Predicted superinsulators in the 2D superconductorinsulator transition (SIT)

M. Krämer & S. Doniach 1998, Phys. Rev Lett. 81 (1998) 3523

Independent prediction of superinsulators in the SIT

Early evidence: D. Shahar et al.2005, Phys. Rev, Lett. 94, (2005) 017003, InO films

A bit of history

V. Vinokur et al.2008, Nature 452 (2008) 613, TiN films

V. Vinokur et al. 2018, Scient. Rep. 8 (2018) 4082, NbTiN films

Charge Berezinskii-Kosterlitz-Thouless transition in superconducting NbTiN films

Alexey Yu. Mironov ^{1,2}, Daniel M. Silevitch⁴, Thomas Proslier ⁵, Svetlana V. Postolova^{1,2}, Maria V. Burdastyh^{1,2}, Anton K. Gutakovskii^{1,2}, Thomas F. Rosenbaum⁴, Valerii V. Vinokur ^{6,7} & Tatyana I. Baturina^{1,2,3,8}

Magnetic condensation in a BKT transition confirmed on NbTiN thin films

Thin film of superconducting material : BEC of charges ± 2e

Charges and vortices both "particles" If charges condense why not vortices?

Everything depends on competition between magnetic energy scale $\mathbf{e_v}^2 = (\pi / \mathbf{e})^2 (1/\lambda_P)$ and Coulomb energy scale $\mathbf{e_q}^2 = \mathbf{e}^2/\mathbf{d}$ ($\lambda_P = \text{Pearl/London length}$)

Gauge theories (GT)

Coulomb interaction

Abelian gauge theory electromagnetism

- one coupling a
- one charge, electric

Strong interactions (hadrons) non-Abelian SU(3) gauge th. quantum chromodynamics

- one coupling a_{QCD}
- 3 types of charges, colour

Non-Abelian GT \rightarrow Confinement + asymptotic freedom

Compact QED Single-color version of QCD

There are **two types of Abelian gauge theories** (Polyakov): ➤ **non compact** (gauge group R)

- charge non-quantized, 1/r potential (3D)
- compact (gauge group U(1) i.e. a circle)
 - charge quantized
 - 2D : always confining like QCD
 - 3D : confining like QCD for a > a_{cr}
 - in confining phase: **linear potential → strings/mesons**

M. C. Diamantini, C. A. T. & V. Vinokur, Nature Comm. Phys., to appear : when Coulomb energy wins in 2D materials \rightarrow always confining U(1) \rightarrow el. strings \rightarrow R = ∞

Superinsulator: Cooper pairs confined in neutral mesons by electric strings that prevent charge transport

How do we find out when Coulomb energy wins over magnetic energy?

Sketch of the phase diagram derivation (C. Diamantini, P. Sodano & C. A. T. 1996, Nucl. Phys. B474 (1996) 641)

Charges + vortices → topological Aharonov-Bohm-Casher interactions

Local formulation requires Introduction of two emergent gauge fields a_{μ} and b_{μ} with Mixed Chern-Simons action

$$\mathbf{T/e} \qquad \qquad \mathbf{S}^{CS} = \int d^3x \Big[i \frac{n}{2\pi} a_\mu \epsilon_{\mu\alpha\nu} \partial_\alpha b_\nu + i \sqrt{n} a_\mu Q_\mu + i \sqrt{n} b_\mu M_\mu \Big]$$

Effective action for the SIT

Gauge invariance completely dictates effective action

$$\begin{split} S_{2D} &= \int d^3x \, i \frac{1}{\pi} a_\mu \epsilon_{\mu\alpha\nu} \partial_\alpha b_\nu + \frac{1}{2e_\nu^2 \mu_P} f_0^2 + \\ &\qquad \frac{\varepsilon_P}{2e_\nu^2} f_i^2 + \frac{1}{2e_q^2 \mu_P} g_0^2 + \frac{\varepsilon_P}{2e_q^2} g_i^2 + i \sqrt{2}a_\mu Q_\mu + i \sqrt{2}b_\mu M_\mu \\ v_c &= 1/\sqrt{\mu_P \varepsilon_P} \end{split} \quad \text{is the velocity of light in the material} \end{split}$$

Integrate out gauge fields \rightarrow effective action for charges and vortices alone \rightarrow energy/entropy balance equations determine condensation conditions

Temperature phase diagram of the SIT

Phase diagram of QCD

Asymptotic freedom

In nature it is impossible to look directly inside a hadron

Here we could make sample smaller than meson size....

From this range linear potential is felt / meson size

Range of Coulomb Interaction screened by photon mass

Cooper pairs essentially free: metallic behaviour expected

Asymptotic freedom

Estimate: meson size in TiN films <~ 60µm

Dependence of resistance on sample size for TiN films

What about 3D?

M. C. Diamantini, P. Sodano & C. A. T. 1996 Nucl. Phys. B474 (1996) 641

M. C. Diamantini, C. A. T. & V. Vinokur, Nature Comm. Phys., to appear

Superinsulators exist also in 3D \rightarrow new state of matter

In 3D vortices are one-dim. objects (loops) → new type of condensate → spaghetti phase

Observable consequences? Yes, finite T scaling of R!

VFT critical behaviour

2D XY model → BKT critical behaviour (2016 Nobel prize)

M. Vasin, V. Ryzhov & V. Vinokur, arXiv:1712.00757

3D XY model with quenched disorder \rightarrow VFT critical behaviour and spin glass in the low T phase

It appears that 3D superinsulators form a disordered glass phase with spontaneous disorder

First system with a condensate of extended excitations (loops). Generalization to any "brane"?

A. Mironov et al. Scient. Rep. 8 (2018) 4082

M. Ovadia et al. Scient. Rep. 5 (2015) 13503

Failed superconductivity

Are superconductor and superinsulator the only two possible phases at low T?

Here Bose condensation of charges favoured by thermal considerations but prevented by strong quantum fluctuations \rightarrow a **bosonic topological insulator** forms (often called **Bose metal** in the literature)

Bosonic topological insulator Bose metal

Bulk frozen, ballistic charge conduction along the edges → metallic behaviour but no Hall effect

Possible technological applications of superinsulators: perfect batteries

Superconductors perfectly store currents Superinsulators perfectly store charge

Superinsulators are "perfect batteries"

Losses due to self-discharge

This cannot happen if cathode and anode coated with superinsulator

electrons

Cutting losses to AC power lines

Two major sources of losses:

- > Conductor losses (CL): finite R of the conductor
- Dielectric losses (DL): electric fields in the dielectric insulator cause currents and heat

CL can be eliminated by **superconducting cables** DL can be eliminated by **superinsulating shields**

Towards AC power lines with no (small) losses....

Ultrafast switches with no energy loss

Dual current - voltage characteristics

Superfast/efficient switch :

 upon local heating current jumps 6 order of magnitude
no loss of energy apart when switching

In general SIs are a much better support for electronic devices than SCs: SCs still consume energy from current leakages, SIs absolutely no energy loss

Conclusion and outlook

Superinsulators have twofold relevance
Pure science: easily accessible laboratory to study confinement and asymptotic freedom ideas
Applied science: new engineering materials with many potential practical applications

The search for high-T_c superinsulators is on.....

Thank you