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Outline
• Jets and transport in heavy ion collisions

• A modern approach to an effective kinetic theory 
for jets and transport

• Incorporating NLO (O(g)) and non-perturbative 
effects: testing the stability of these perturbative 
results

Pedagogical review in JG Teaney 1502.03730 (in QGP5)
Gritty details for jets in JG Moore Teaney 1509.07773
NLO transport JG Moore Teaney, in preparation



 

Overview



• In the temperature/baryon chemical potential plane:
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Figure 2.1: A sketch of the QCD phase diagram. Figure taken from [96].

tential and T is the temperature1. In the bottom left corner, for low temperatures and
chemical potentials, there is the hadronic matter phase, where quarks and gluons are
confined into hadrons and the approximate chiral symmetry of QCD is spontaneously
broken. These hadrons form a gas which, at su�ciently high chemical potential and low
temperatures undergoes a phase transition to a liquid phase. The critical line and its
endpoint are shown in green in the diagram and are of great interest for nuclear physics,
since they are in the same (T, µB) region of nuclear matter.
Moving further to the right at low temperatures and increasing chemical potentials, one
encounters the quark matter phases, which can be described by a degenerate Fermi liquid
and might be of relevance for the description of the cores of compact/neutron stars. At
asymptotically large chemical potentials there is a growing consensus for the existence of
a Colour SuperConductor (CSC) phase, possibly in its particular Colour-Flavour Locked
(CFL) flavour [97]. We refer to [98] for a review on colour superconductivity. It is also
worth mentioning that, for SU(Nc) gauge theories in the large-Nc limit, the existence
of a confined but chirally symmetric phase, called quarkyonic matter has recently been
proposed [99]. This phase would occur in the region of the phase diagram of the large-Nc

theory corresponding to the quark matter region of the QCD phase diagram.
Our sector of interest is instead the upper-left part of the diagram, which is occupied
by the quark-gluon plasma (QGP) phase. In this phase, whose name is due to Shuryak
[100], quarks and gluons are no longer confined into hadrons, but rather unbound in a
gas of coloured particles and the approximate chiral symmetry is restored. This phase
has been actively searched for in heavy ion collision experiments in the past decades,
from the pioneering experiments at the Alternating Gradient Synchrotron (AGS) at
Brookhaven National Laboratory (BNL) and at the Super Proton Synchrotron (SPS) at
CERN in the 1980s and 1990s, to the ongoing experiments at the Relativistic Heavy Ion

1We adopt a system of units where the Boltzmann constant kB is equal to unity; therefore a temper-
ature of 1 GeV corresponds in SI units to approximately 1.16� 1013 K.
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Quark-Gluon Plasma:
deconfined, chirally symmetric phase

• At low temperature and moderate densities: ordinary hadrons 
and nuclear matter.

• Colour confinement



• As the temperature is increased:
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Quark-Gluon Plasma:
deconfined, chirally symmetric

• In the upper-left region, lattice QCD indicates a (pseudo)critical 
temperature Tc~160 MeV ~2x1012 K 

• For comparison, sun’s core: T~1.5x107 K
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• In the upper-left region, lattice QCD indicates a (pseudo)critical 
temperature Tc~160 MeV ~2x1012 K 

• For comparison, sun’s core: T~1.5x107 K



• A (transient) QGP can be formed in heavy ion collision 
experiments. RHIC (@BNL), up to             =200GeV. LHC 
up to             =5.5 TeV (5 so far). 
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• A (transient) QGP can be formed in heavy ion collision 
experiments. RHIC (@BNL), up to             =200GeV. LHC 
up to             =5.5 TeV (5 so far). 
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• Two Lorentz-contracted nuclei collide

• Rapid formation of a near-thermal QGP (~1 fm/c)

• Expansion and cooling for up to 5-10 fm/c, then

• Hadronizazion

• Lots of particles (dNch/dy O(1000)) stream to the detectors

Heavy-ion collisions



Characterizing the QGP
• Characterization of the medium through two classes of 

observables

• Bulk properties: “macroscopic” evolution of the fireball 
effectively described by hydrodynamics. The QGP 
behaves as a strongly coupled, almost ideal fluid

• Hard probes: high-energy particles not in equilibrium 
with the medium (jets, e/m probes, quarkonia...).

• Medium tomography and characterization of its properties, 
such as temperature, deconfinement, χ-sym restoration...



Jet quenching
• One of the main results of the HIC program: jets are 

suppressed with respect to proton-proton collisions

• Quantitatively: look at deviations from binary 
scaling

JET Collaboration

Determining q̂ from experimental data JET Collaboration

• q̂ largely determines the rate of radiative energy loss in plasma

• Measure the yield of high momentum particles nucleus-nucleus events

RAA ⌘ dN/dpT yield in nucleus nucleus

dN/dpT yield in proton protonAuthor1 et al. / Nuclear Physics A 00 (2014) 1–4 3
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Figure 1. (Color online) Best fits to the suppression ratios of single hadron spectra in central (0-5%) Au+Au at
�
s = 200 GeV (left panel) and

Pb+Pb collisions at
�
s = 2.76 TeV (right panel) as compared to PHENIX data [14, 15] at RHIC and ALICE [16] and CMS data [17] at LHC.

the extracted values of strong coupling constant �s . The HT models assume that q̂ is independent of jet energy in this
study. The errors within each model are from the �2 fit with one standard deviation. The variation of q̂ values between
di�erent models can be considered as theoretical uncertainties. One therefore can extract its range of values at RHIC
and LHC as:

q̂
T 3
�
�
4.6 ± 1.2 at RHIC,
3.7 ± 1.4 at LHC,

at the highest temperatures reached in the most central Au+Au collisions at RHIC and Pb+Pb collisions at LHC. The
corresponding absolute values for q̂ for a 10 GeV quark jet are,

q̂ �
�
1.2 ± 0.3
1.9 ± 0.7 GeV2/fm at T=370 MeV,

T=470 MeV,

at an initial time �0 = 0.6 fm/c. These values are consistent with LO pQCD estimates, however, with a somewhat
small values of �s as obtained in CUJET, MARTINI and McGill-AMY model. The value of q̂N/T 3eft in cold nuclei as
extracted from jet quenching in DIS [5] is also shown here. The value of q̂N = 0.02 GeV2/fm is an order of magnitude
smaller than that in A+A collisions at RHIC and LHC.

In the immediate future, one should be able to carry out the same analyses at higher LHC energy and some
of the beam scanning energies at RHIC. Shown in Fig. 2 (left panel) as open boxes with question marks are the
predicted values of q̂ at future higher LHC energy and RHIC bean scanning energies. Together with the current values
at the LHC and the highest RHIC energy, one can obtain a rough temperature dependence of q̂/T 3. Furthermore,
comparisons to dihadron and gamma-hadron correlations can provide additional constraints on q̂.

In the long term future, one should develop and implement complete next-to-leading order calculations of parton
energy loss for further reduction of theoretical uncertainties. Though factorization of initial jet production and final-
state parton energy loss is assumed in all studies, it has never been explicitly proven nor illustrated. In a recent study,
the complete NLO calculations of transverse momentum weighted cross sections of semi-inclusive DIS (SIDIS) and
Drell-Yan processes in p+A collisions have been performed for the first time at twist-four [18]. The factorization of the
initial production hard processes and higher-twist matrix elements or q̂ in the final-state has been explicitly illustrated.
Furthermore, the QCD evolution of the twist-four parton correlation matrix which is related to q̂ has been identified.
One therefore can solve the evolution equation and determine the scale dependence of the jet transport parameter q̂.
Such evaluation of q̂ evolution has also been similarly performed [19]. This should be one of the long-term goals of
experimental studies of jet quenching in future high-energy heavy-ion collisions.

As a final remark, I would like to emphasize that q̂ represents the averaged transverse momentum broadening
squared for single partons. Therefore, broadening of dijet correlation in azimuthal angle is only indirectly related to
q̂. In a recent study within Linear Boltzmann Transport (LTB) model, the large angle tail of the dijet correlation is
shown to be sensitive to the value of q̂ [20]. High precision data are needed for any phenomenological study. The most

3

Fit: q̂ ' (3.7 ± 1.4) T 3

RAA =
YieldAA

Yieldpp ⇥Nbin



Jets quenching
• Qualitatively striking aspect: the dijet 

asymmetry2 2 Experimental method

Figure 1: Example of an unbalanced dijet in a PbPb collision event at psNN = 2.76 TeV. Plot-
ted is the summed transverse energy in the electromagnetic and hadron calorimeters vs. h
and f, with the identified jets highlighted in red, and labeled with the corrected jet transverse
momentum.

The data provide information on the evolution of the dijet imbalance as a function of both
collision centrality (i.e., the degree of overlap of the two colliding nuclei) and the energy of
the leading jet. By correlating the dijets detected in the calorimeters with charged hadrons
reconstructed in the high-resolution tracker system, the modification of the jet fragmentation
pattern can be studied in detail, thus providing a deeper insight into the dynamics of the jet
quenching phenomenon.

The paper is organized as follows: the experimental setup, event triggering, selection and char-
acterization, and jet reconstruction are described in Section 2. Section 3 presents the results and
a discussion of systematic uncertainties, followed by a summary in Section 4.

2 Experimental method
The CMS detector is described in detail elsewhere [20]. The calorimeters provide hermetic
coverage over a large range of pseudorapidity, |h| < 5.2, where h = �ln [ tan(q/2)] and q is
the polar angle relative to the particle beam. In this study, jets are identified primarily using
the energy deposited in the lead-tungstate crystal electromagnetic calorimeter (ECAL) and the
brass/scintillator hadron calorimeter (HCAL) covering |h| < 3. In addition, a steel/quartz-
fiber Cherenkov calorimeter, called Hadron Forward (HF), covers the forward rapidities 3 <
|h| < 5.2 and is used to determine the centrality of the PbPb collision. Calorimeter cells are
grouped in projective towers of granularity in pseudorapidity and azimuthal angle given by
Dh ⇥ Dj = 0.087⇥ 0.087 at central rapidities, having a coarser segmentation at forward rapidi-
ties. The central calorimeters are embedded in a solenoid with 3.8 T central magnetic field. The
event display shown in Fig. 1 illustrates the projective calorimeter tower granularity over the
full pseudorapidity range. The CMS tracking system, located inside the calorimeter, consists
of pixel and silicon-strip layers covering |h| < 2.5, and provides track reconstruction down to
pT ⇡ 100 MeV/c, with a track momentum resolution of about 1% at pT = 100 GeV/c. A set
of scintillator tiles, the Beam Scintillator Counters (BSC), are mounted on the inner side of the

CMS PRC84 (2011)



Flow: a bulk property
• Initial asymmetries in position space are converted by 

collective, macroscopic (many body) processes into 
final state momentum space asymmetries

• Quantitatively: azimuthal Fourier decomposition of 
the final state particle spectra

vzero amplitude + vn coefficients

• 2D analogue of the multipole expansion of the CMB

dNi

dy d2pT
=

dNi

2⇡pT dPT dy

 
1 +

1X

n=1

2vi,n(pT , y) cos(n�)

!
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• Hydrodynamics describes the buildup of flow. The shear 
viscosity parametrizes the efficiency of the conversion

A famous example:elliptic flow
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Hydrodynamics
• Field theories admit a long-wavelength hydrodynamical 

limit. Hydrodynamics: Effective Theory based on a 
gradient expansion of the flow velocity

• For hydro fluctuations with local flow velocity v around 
an equilibrium state (with temp. T), at first order in the 
gradients and in v

Navier-Stokes hydro, two transport coefficients: bulk and 
shear viscosity

T 00 = e, T 0i = (e+ p)vi

T ij = (p� ⇣r · v)�ij � ⌘

✓
@iv

j + @jv
i � 2

3
�ijr · v

◆



The shear viscosity

• Finite shear viscosity smears out flow differences (diffusion)

⌘ = 0

No friction

⌘ > 0

Friction



Hydro meets data
Not-so-ultra-central vn

IP-Glasma RHIC and LHC:
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Jeon (McGill) Characterizing QGP St. Petersburg 2014 32 / 62

• Description of initial state also very important
Gale Jeon Schenke Tribedy Venugopalan PRL110 (2013)



Hydro meets data

• The shear viscosity, being dissipative, smears out flow 
differences and makes the position→momentum conversion 
less efficient
Plot from Luzum Romatschke PRC78 (2008)
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Fig. 15. Figure from Ref.31 which shows how elliptic flow depends on shear viscosity. The theory
curves are most dependable for pT <∼ 1.5GeV and should be compared to the “non-flow corrected”
data. The Glauber and CGC initial conditions have different eccentricities as described in the text.

where the overall constant is adjusted to reproduce the multiplicity in the event.
The simulations assume Bjorken boost invariance with the ansatz

e(τ,x⊥, η) ≡ e(τ,x⊥) , (111)

uµ(τ,x⊥, η) = (uτ , ux, uy, uη) = (uτ (τ,x⊥), ux(τ,x⊥), uy(τ,x⊥), 0) . (112)

In cartesian coordinates uz = uτ sinh(ηs) and ut = uτ cosh(ηs). The calcula-
tions typically assume zero transverse flow velocity at the initial time τo

ux(τo,x⊥) = uy(τo,x⊥) = 0 , uτ (τo,x⊥) = 1 . (113)



• Current hydro analyses now sensitive to the 
temperature dependence of the shear viscosity
Niemi Eskola Paatelainen 1505.02677

5

fully described by fluid dynamics. Therefore, even if the
fluid dynamical models have been very successful in de-
scribing the low-pT hadron spectra measured at RHIC
and LHC energies, it is still not clear in how detail one
should trust the fluid dynamical description, and what
are its limitations.

It is then clear that reaching the final goal of deter-
mining the transport properties of the matter from the
experimental data requires that also the uncertainties re-
lated to the fluid dynamical evolution are systematically
charted. There are currently a few ways of extending the
applicability of fluid dynamics. For example, the moment
expansion of the Boltzmann equation provides a way to
include in principle arbitrary orders of the gradients into
the description, and it has been shown that including all
the second order terms consistently into the description
is essential in describing the detailed structure of shock
waves [93]. One of the characteristics of heavy-ion col-
lisions is that the early expansion is highly asymmetric,
i.e. the system starts with a fast longitudinal expansion,
and transverse expansion develops only later. This kind
of anisotropic expansion results in also highly anisotropic
local momentum distributions, which can lead to a break-
ing of the usual fluid dynamical description. This is
the motivation for the so-called anisotropic hydrodynam-
ics [94–96], where the functional form of the expansion
around the equilibrium state is designed to allow large de-
viations from an isotropic momentum distributions. Nei-
ther of these methods are, however, applied to a full de-
scription of heavy-ion collisions, yet.

One of the important conditions for the applicability
of fluid dynamics is that different systems should be de-
scribed by the same transport coefficients that can de-
pend on temperature and chemical potentials, but not
e.g. on the collision energy or the nuclear mass number.

C. Our fluid dynamical setup

In this work we employ the setup previously used
in Refs. [13, 14, 24, 55], where the longitudinal ex-
pansion is approximated by a scaling flow consistent
with longitudinal boost-invariance. In this approxima-
tion the longitudinal flow velocity is given by vz = z/t,
and the components of the energy-momentum tensor,
Eq. (1), become independent of the spacetime rapidity
⌘s = (1/2) ln [(t+ z)/(t� z)], i.e., they depend on the
transverse coordinates, r = (x, y), and the longitudinal
proper time, ⌧ =

p
t

2 � z

2, only. From a numerical point
of view, this reduces the (3+1)–dimensional problem to
a (2+1)–dimensional one.

The coefficients of the non-linear terms in the equa-
tions of motion for the shear-stress tensor, Eq. (4), are
taken from the 14-moment approximation to the ultra-
relativistic gas [68, 69, 71], i.e., c1 = �(4/3)⌧⇡, c2 =

�(10/7)⌧⇡, c3 = 2⌧⇡, and c4 = 9/(70P0), and the relation

FIG. 1. (Color online) Parametrizations of the temperature
dependence of the shear-viscosity to entropy ratio, labelled
here in the order of increasing ⌘/s at T = 100 MeV. For more
details, see the text and Table I.

between the relaxation time ⌧⇡ and the shear viscosity is

⌧⇡ =

5⌘

e+ P0
. (7)

In thermodynamical equilibrium, the properties of the
matter are essentially given by the EoS that gives pres-
sure as a function of temperature. Here we use the
s95p-PCE-v1 parametrization of lattice QCD results at
zero net-baryon density [97]. The high-temperature part
of this EoS is from the hotQCD collaboration [98, 99]
and it is smoothly connected to a hadron resonance gas,
where resonances up to mass of 2 GeV are included. The
hadronic part of the EoS includes a chemical freeze-out
at Tchem = 175 MeV, where all stable hadron ratios are
fixed [100–102]. A hadron is considered stable, if its life-
time is more than 10 fm. In the perfect fluid limit the
construction of the chemical freeze-out also conserves the
number of stable particles. However, in the viscous fluid
there is still small (approximately 1%) entropy produc-
tion below Tchem = 175 MeV, and this leads to a small
increase in the number of particles during the evolution
of chemically frozen hadronic matter.

Once the transport coefficients and EoS above are
given, the only degrees of freedom left are the shear vis-
cosity to entropy density ratio ⌘/s(T ) and the initial com-
ponents Tµ⌫

(⌧0, r). In the boost-invariant approximation
it is enough to specify T

µ⌫
(⌧0, r) in the transverse plane

at some initial proper time ⌧0. The initial conditions
calculated from the EbyE EKRT setup are discussed in
detail in the next section.

As shown in Fig. 1, we parametrize the temperature
dependence of the ⌘/s ratio in a similar manner as we did
in [55], by assuming a minimum of ⌘/s at T = Tmin to
be somewhere in the cross-over temperature-region and a
linearly rising (decreasing) behavior in the QGP (HRG)

21

FIG. 14. (Color online) Centrality dependence of the flow coefficients vn{2} from the charged hadron 2-particle cumulants inp
sNN = 2.76 TeV Pb+Pb collisions at the LHC (panel (a)), and the coefficients v2{2}, v3{2}, and v4{3} from the charged hadron

2- and 3-particle cumulants in 200 GeV Au+Au collisions at RHIC (panel (b)), computed for the five ⌘/s(T ) parametrizations
shown in Fig. 1. Experimental data are from ALICE [140] and STAR [130, 141, 142].

FIG. 15. (Color online) Panel (a): Fluctuation spectra of the final-state v2 of charged hadrons (solid curves) and of the initial
state "2 (dashed) in the 5�10 % centrality class in

p
sNN = 2.76 TeV Pb+Pb collisions at the LHC, computed with the pQCD

+ saturation initial states and ⌘/s = 0.20, and with the Glauber-model initial states using ⌘/s = 0.10. The experimental data
are from ATLAS [28]. Panel (b): The same but for the 35-40% centrality class.

demonstrating the necessity of fluid dynamics in describ-
ing the detailed response to the initial eccentricities, see
also Ref. [145]. The fluctuation spectra of the higher
harmonics v3 and v4 are also well reproduced with the
pQCD+saturation initial conditions, but they do not
show similar sensitivity to the initial conditions as the
v2 fluctuations.

Figure 16 shows the P (�v2) distribution of charged
hadrons in the same 35�40 % centrality class with pQCD
+ saturation initial conditions as panel (b) of Fig. 15, but
with three different ⌘/s(T ) parametrizations: ⌘/s = 0.20,
⌘/s = param4, and ⌘/s = 0. As can be seen from the fig-
ure, the final �v2 distribution is the same with all three
⌘/s parametrizations. This is true even in the perfect
fluid limit ⌘/s = 0. This shows that even if the fluid

dynamical evolution plays a crucial role in getting the
final v2 distributions correctly reproduced in the periph-
eral collisions, they are still a good probe of the initial
conditions, because they do not depend on the details of
the fluid dynamical evolution.

Then, a very interesting question is how directly the
final-state v2 distribution can reflect the initial state "2

distribution (and vice versa). If v2 and "2 are, to a suf-
ficient approximation, linearly correlated, v2 / "2, then
the scaled distributions P (�v2) and P (�"2) are naturally
identical. As seen from the panel (a) of Fig. 15, this is
the case in central collisions. However, as noticed from
the panel (b), the distributions are not anymore the same
in peripheral collisions, indicating that there must be de-
viations from the linear relation. What complicates the

Hydro meets data



Estimating η: counterintuitive?

• Weak coupling: long 
distances between 
collisions, easy 
diffusion. Large η

• Strong coupling: short 
distances between 
collisions, little 
diffusion. Small η 



• Using                         and in the high-T limit (vx~1)

• u flow velocity, vx microscopical velocity of particles

Estimating η
 (or why is η/s natural)

Kinetic Theory estimate

(x) = 0

Longitudinal flow

Longitudinal flow

u

u z

z Transverse particle transfer

vx
l

l

(x+l)

(x−l)

u z
uz : Flow velocity
vx : Average speed of micro-

scopic particles

Rough estimate (fluid rest frame, or uz(x) = 0)
The momentum density: T0z = (✏+ P)u0uz diffuses in the x
direction with vx = ux/u0. Net change:
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Figure by S. Jeon



• (Mean free path)-1~ cross section x density

• Cross section in a perturbative gauge theory (T only scale*)

* Coulomb divergences and screening scales (mD~gT) in 
gauge theories

• From holography one instead has η/s=1/(4") (for
SYM) and a conjectured lower limit 
Kovtun Son Starinets Policastro PRL87 (2001) PLR94 (2004)

� ⇠ g4

T 2

⌘

s
⇠ 1

g4

⌘

s
⇠ T lmfp ⇠ T

n�
⇠ 1

T 2�

� ⇠ g4

T 2
ln(1/g)

⌘

s
⇠ 1

g4 ln(1/g)

Estimating η
 (or why is η/s natural)

N = 4



The effective kinetic theory



Theory approaches to transport 
coefficients and jets



• pQCD: QCD action (and EFTs thereof). Can be 
done both in and out of equilibrium. Real world: 
extrapolate from g≪1 to  αs~0.3

=)

2

+ Crossings

Figure 4. Cut of a two loop diagram (left) corresponds to a 2 $ 2 scattering process (right).

=)

2

+ . . .

Figure 5. Two-loop diagram cut through a self-energy correction on the gluon, which corresponds
to scattering-induced photon radiation (crossings not shown)

significant spectral weight in this region. This leads to a distinct contributing kinematical

region which corresponds to scattering-induced emission, as shown in Fig. 5. We will call

these collinear processes or collinear splitting processes. Aurenche et al [20] first showed

that these processes are also leading order and can even be numerically dominant. The

reason is that the process includes a kinematical region in which the intermediate quark

line in Fig. 5 is nearly on the mass shell. But this near-singularity requires the inclusion

of self-energy corrections, which bring in additional diagrams by gauge invariance and the

necessity to correctly represent charge conservation. Therefore, in the kinematic region

where gluons are soft and spacelike (representing scattering processes), one must sum

over multiple gluon exchanges, such as the diagram of Fig. 6. The interference e↵ect this

generates and the associated suppression are called Landau-Pomeranchuk-Migdal (LPM)

e↵ect.

In [13], AMY showed that these two kinds of processes (elastic scattering when one

gluon is on-shell, scattering induced emission with any number of soft spacelike gluons) are

both needed in the calculation, but arise from kinematically distinct momentum regions.

Therefore the computation can be separated into a contribution from each process. The

easiest way to see that this is true is to consider the components of the o↵-shell fermion’s

momentum P , particularly the transverse component p? and the longitudinal component

p+. As illustrated in Fig. 7, the relevant momentum regions are quite distinct when viewed

– 6 –
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• pQCD: QCD action (and EFTs thereof). Can be 
done both in and out of equilibrium. Real world: 
extrapolate from g≪1 to  αs~0.3

• lattice QCD: Euclidean QCD action, equilibrium 
only. Real world: analytically continue to 
Minkowskian domain
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• pQCD: QCD action (and EFTs thereof). Can be 
done both in and out of equilibrium. Real world: 
extrapolate from g≪1 to  αs~0.3

• lattice QCD: Euclidean QCD action, equilibrium 
only. Real world: analytically continue to 
Minkowskian domain

• AdS/CFT:            action, in and out of equilibrium, 
weak and strong coupling. Real world: extrapolate 
to QCD 

N=4
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The weak-coupling pictureBasic picture of weakly coupled plasma – hard particles and soft fields

Hard particle modes, P ⇠ T

Soft field modes, P ⇠ gT

↵

s

= g

2
/4⇡

• The soft fields can be treated classically since their occupation number is large

nB(!) =

1

e!/T � 1

' T

!
⇠ 1

g

Figure by D. Teaney

Hard particles, P~T

Soft 
field 

modes 
P~gT

↵s =
g2

4⇡

• The gluonic soft fields have large occupation numbers ⇒ 
they can be treated classically

nB(!) =
1

e!/T � 1

!⇠gT
' T

!
⇠ 1

g



Weak-coupling thermodynamics

• Successful for static (thermodynamical) quantities. 
Possibility of solving the soft sector non-perturbatively 
(dimensionally-reduced theory on the lattice)
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Figure 3. The Nf = 3 second (left) and fourth (right) order diagonal QNS normalized to their
respective Stefan-Boltzmann values. The truncated three-loop HTLpt results are from [26] and the
lattice data are from BNL-Bielefeld (BNL-B) [5–7] and Wuppertal-Budapest (WB) [8, 9].

renormalization scale sensitivity of their results. For the gauge coupling, they used a one-

loop running with ⇤MS = 176 MeV, which for Nf = 3 gives ↵s(1.5 GeV) = 0.326 as well.

4.2 Results for three flavors

Let us begin the analysis of our results from the quark number susceptibilities in the

physically most interesting case of Nf = 3. In figure 3 (left), we display the second order

diagonal susceptibility �u2 normalized to its Stefan-Boltzmann limit �u2,SB = T 2. The

blue band in the figure corresponds to the DR result, obtained by varying the values of

both ⇤̄ and ⇤MS in the ranges explained above, while the red and orange bands are the

exact one-loop and truncated three-loop HTLpt results. The thick dashed lines inside the

bands correspond to the central values of the renormalization and QCD scales. Finally, we

note that the three-loop HTLpt band in fact corresponds to the baryon (and not quark)

number susceptibility [26]; however, for the second order susceptibilities the di↵erence

between these two quantities should be hardly visible [5].

The widths of the bands shown indicate that the scale dependence of the DR result is

extremely weak, except for the very lowest temperatures. At the same time, the one- and

three-loop HTLpt results are also quite close to one another for temperatures above 500

MeV, indicating that the quantity under consideration nicely converges at these tempera-

tures.4 In figure 3 (left) we also display lattice results from both the BNL-Bielefeld (BNL-B,

black dots) [5] and Wuppertal-Budapest (WB, green dots) [8] collaborations. Both sets of

data have been continuum extrapolated. We observe that the DR and three-loop HTLpt

results are all in good agreement with the two lattice results for temperatures of roughly

500 MeV and higher; at even lower T , some di↵erences do, however, occur and it is the

resummed DR result that seems to agree better with the lattice data points.

In figure 3 (right), we next show our results for the fourth order diagonal QNS �u4

normalized to the corresponding Stefan-Boltzmann limit �u4,SB = 6/⇡2. Once again, the

4Although we do not show it in figure 3 (left), the two-loop HTLpt result for the second-order suscepti-

bility is also quite close to the three-loop HTLpt result for temperatures above 500 MeV [24].

– 14 –
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The effective kinetic theory

Baym Braaten Pisarski Arnold Moore Yaffe Baier Dokshitzer Mueller 
Schiff Son Peigné Wiedemann Gyulassy Wang Aurenche Gelis Zaraket 
Blaizot Iancu . . .



• Justified at weak coupling, but can be extended to factor in 
non-perturbative contributions (in progress, more later)

• The effective theory is obtained by integrating out (off-shell) 
quantum fluctuations (for instance from Kadanoff-Baym 
equations). Appropriate for describing the dynamics of 
excitations on scales large compared to 1/T, which is the size 
of the typical de Broglie wavelength of an excitation. 

• Boltzmann equation for the single-particle phase space-
distribution: its convective derivative equals a collision 
operator

The effective kinetic theory

(@t + vp ·r)f(p,x, t) = C[f ]



• The effective theory is obtained by integrating out (off-shell) 
quantum fluctuations (for instance from Kadanoff-Baym 
equations). Appropriate for describing the dynamics of 
excitations on scales large compared to 1/T, which is the size 
of the typical de Broglie wavelength of an excitation. 

• Boltzmann equation for the single-particle phase space-
distribution: its convective derivative equals a collision 
operator

• In other words at weak coupling the underlying QFT has 
well-defined quasi-particles. These are weakly interacting 
with a mean free time (1/g4T) large compared to the actual duration 
of an individual collision (1/T)

The effective kinetic theory

(@t + vp ·r)f(p,x, t) = C[f ]



The collision operator
• A modern approach to the (LO) collision operator

(@t + vp ·r)f(p,x, t) = C large[µ?] + Cdi↵ [µ?] + Ccoll

• For illustration purposes, quarks are omitted from the 
plasma in this talk



(@t + vp ·r)f(p,x, t) = C large[µ?] + Cdi↵ [µ?] + Ccoll

• 2↔︎2 processes with large momentum transfer

• Loss - gain structure

• Q>gT, O(1) deflection angles

• Need to exclude the IR with a cutoff "⟂

• Logarithmic sensitivity to the cutoff⇒
Can use bare matrix elements

January 28, 2015 15:23 World Scientific Review Volume - 9.75in x 6.5in eloss
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Fig. 1. Hard 2 $ 2 collision contributing the collision rate C
2$2

[µ]. Only hard lines which
enter or exit the boxed region are included in an e↵ective Boltzmann description.

hard2to2

ways this divergence can be regulated. At leading and next-to-leading we find
it convenient16 to simply cuto↵ the transverse momentum exchange at small q?,
q? > µ. It is not di�cult to extract the logarithmic dependence on µ for µ ⌧
T . Indeed, let us consider for illustration a leading-log approximation to C2$2[µ]:
we expand the distribution function and matrix elements to second order in the
exchange momentum Q and arrive at a Fokker-Planck equation21–23 for f

p

C2$2[µ] = ê
UV

(µ) vi
@f

p

@pi
+

1

2
q̂ij
UV

(µ)
@2f

p

@pi@pj
+O

✓
T

p

◆
+ µ-independent , (12){eq:twotwoexpand}

In writing this equation we have dropped terms suppressed by T/p. Here v̂ is a unit
vector in the direction of p, and the di↵usion tensor qij

UV

(µ) controls the longitudinal
and transverse momentum di↵usion,

q̂ij
UV

(µ) ⌘ q̂L,UV

(µ)v̂iv̂j +
1

2
q̂
UV

(µ)(�ij � v̂iv̂j) . (13)

The values of these coe�cients are found from the expansion of Eq. (10), and for
pure gauge are at leading log

q̂
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Here the Debye mass is given by the integral over distribution functions

m2
D = 2g2CA

Z
d3p

(2⇡)3
np(1 + np)

T
=

1

3
g2CAT

2 , (16){eq:md}

and the asymptotic mass is given by a similar integral in Eq. (8). At this point
the interpretation of these thermodynamic integrals as the Debye and asymptotic
masses is premature. This interpretation will be clear from Sec. 3, which explains

The collision operator
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• A modern approach to the (LO) collision operator

P

K K 0

P 0



(@t + vp ·r)f(p,x, t) = C large[µ?] + Cdi↵ [µ?] + Ccoll

The collision operator
• A modern approach to the (LO) collision operator

• How to deal with the soft Q region?

• Older approach: dressing the intermediate propagator 
with Hard Thermal Loops for IR finiteness
Braaten Pisarski, Arnold Moore Yaffe (AMY)

• Hard Thermal Loops: resummation of 1-loop hard off-
shell loops into soft propagators (and vertices). Rich 
structure

Q~T

P ~ E

when Q is soft
Replace me with plasma response

• The response function is rich with poles (plasmons) and cuts (landau damping)
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• Two limits:
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(@t + vp ·r)f(p,x, t) = C large[µ?] + Cdi↵ [µ?] + Ccoll

The collision operator
• A modern approach to the (LO) collision operator

• New approach: diffusion. Fokker-Planck drag limit for 
small Q, with the soft background factored into Wilson-
line operators

• Three operators:

• Transverse momentum broadening

• Longitudinal momentum broadening

• Drag

Cdi↵ [µ?] =
@

@pi


⌘D(p)pif(p)
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2
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Momentum broadening
• In this soft background the lightlike particle experiences a  

“force” 

field strength dressed by Wilson lines on the light cone 

• Momentum broadening is then given by

• Rigorous formulation from SCET possible 
Benzke Brambilla Escobedo Vairo JHEP1302 (2013)

• At leading order: integrals over HTL propagator?

F i(x+) ⌘ U

†(x+
,�1) gF iµ(x+)vµ U(x+

,�1)

q̂ij ⌘ 1

dR

Z +1

�1
dt0

⌦
F i(t)Fj(0)

↵
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3.3. Longitudinal di↵usion and non-Euclidean operators
{sub_sumrule}

As we mentioned at the beginning of Sec. 3, not all lightcone or light-front supported
operators admit a three-dimensional, Euclidean description for the soft modes. A
prime example is the longitudinal momentum di↵usion coe�cent q̂L, as given by
Eq. (27). At leading order it is given by the diagram shown in Fig. 5. In any

Fig. 5. The leading-order soft contribution to q̂
L

. The two dots are the two field strengths and
the double line is the adjoint Wilson line connecting them. The curly line is a soft HTL gluon. {fig_lo_soft}

non-singular gauge it reads

q̂L = g2CA

Z +1

�1
dx+

Z
d4Q

(2⇡)4
e�iq�x+

(q+)2G��
rr (Q), (67){lo}

where again G��
rr (Q) is given by Eq. (58). The x+ integration sets q� to zero.

We clearly see that, although originating from a lightcone operator, q+ cannot be
evaluated in EQCD: indeed, the zero-mode contribution exactly vanishes when the
previous techniques are applied.

We can however evaluate Eq. (67) by employing sum rules that are rooted in the
same analyticity properties that were used in the derivation of Eq. (64). In detail,
we plug the result of Eq. (58) in Eq. (67). Up to O(g2) correctionsm we then have

q̂L = g2CA

Z
dq+d2q?
(2⇡)3

Tq+(G��
R (q+, q?)�G��

A (q+, q?)). (68){lo2}

This too would be a simple enough numerical integral49 over the HTL spectral
function in the Landau cut, of di�cult extension to higher orders. However, as
we have previously remarked, retarded (advanced) two-point functions are analytic
in the upper (lower) half-plane in any timelike or light-like variable. We can thus
deform the integration contours16 away from the real axis onto CR (|q+| = µ+ � gT ,
Im q+ > 0) and CA (|q+| = µ+ � gT , Im q+ < 0), as depicted in Fig. 6.n µ+ is a

mWhen expanding the statistical factor in the soft region in Eq. (58), one has n
B

(!) + 1/2 =
T/!(1 +O(g2)).
nThe longitudinal and transverse contributions to G��

R

(Q) contain poles at q+ = q�/2 ± iq?
(q2 = 0), which, being on both sides of the complex plane, appear to violate analyticity. However
their residue cancels in the sum of longitudinal and transverse components. As observed in12 ,
they are artifacts of the decomposition into Lorentz-variant longitudinal and transverse modes and
their contribution has to vanish in all gauge-invariant quantities.

F F



Momentum broadening

• Breakthrough over the past ~10 years. Heuristically, the hard, 
light-like parton sees undisturbed soft modes, which “can’t 
keep up” with it (up to O(g2) suppressed collinear effects)

• Mathematically, this translates into analytical properties of 
retarded and advanced correlators at light-like momenta

• In transverse diffusion: dimensional reduction becomes 
applicable 

F i(x+) ⌘ U

†(x+
,�1) gF iµ(x+)vµ U(x+

,�1) q̂ij ⌘ 1

dR

Z +1

�1
dt0

⌦
F i(t)Fj(0)

↵

q̂(µ?) =g2CA

Z µ? d2q?
(2⇡)2

Z
dq+

2⇡
hF�?(Q)F�

?iq�=0

=g2CAT

Z µ? d2q?
(2⇡)2

q2?

✓
1

q2?
� 1

q2? +m2
D

◆
=

g2CATm2
D

2⇡
ln

µ?
mD

Caron-Huot PRD79 (2008)



Momentum broadening

• Breakthrough over the past ~10 years. Heuristically, the hard, 
light-like parton sees undisturbed soft modes, which “can’t 
keep up” with it (up to O(g2) suppressed collinear effects)

• Mathematically, this translates into analytical properties of 
retarded and advanced correlators at light-like momenta

• In longitudinal diffusion: sensitive only to ω≈q≫gT 
dispersion relation

F i(x+) ⌘ U

†(x+
,�1) gF iµ(x+)vµ U(x+

,�1) q̂ij ⌘ 1

dR

Z +1

�1
dt0

⌦
F i(t)Fj(0)

↵

JG Moore Teaney 

q̂L(µ?) =g2CA

Z µ? d2q?
(2⇡)2

Z
dq+

2⇡
hF�z(Q)F�ziq�=0

=g2CAT

Z µ? d2q?
(2⇡)2

✓
1� q2?

q2? +m2
1

◆
=

g2CATm2
1

2⇡
ln

µ?
mD

!2 � q2 �m2
1 = 0, m2

1 = m2
D/2



• Drag: related by Einstein-like relation to momentum 
broadening

• In the end, cutoff dependence vanishes between diffusion 
and large-angle scatterings

(@t + vp ·r)f(p,x, t) = C large[µ?] + Cdi↵ [µ?] + Ccoll

The collision operator
• A modern approach to the (LO) collision operator

Cdi↵ [µ?] =
@

@pi


⌘D(p)pif(p)

�
+

1

2

@2

@pi@pj

✓
p̂ip̂j q̂L(µ?) +

1

2
(�ij � p̂ip̂j)q̂(µ?)

◆
f(p)

�

⌘D(p) =
q̂L
2Tp

+O
✓

1

p2

◆



• Collinear splitting/joining induced by soft scatterings with 
the medium constituents

• Apparently suppressed
 by powers of g but

• Soft and collinear enhancements 
cancel the suppression

• Mean free time between soft collisions (1/g2T) of the same 
order of formation time ⇒ interference of many such 
scatterings (Landau-Pomeranchuk-Migdal effect)
Baier Dokshitzer Mueller Schiff Son Zakharov Arnold Moore Yaffe

(@t + vp ·r)f(p,x, t) = C large[µ?] + Cdi↵ [µ?] + Ccoll

The collision operator
• A modern approach to the (LO) collision operator

January 28, 2015 15:23 World Scientific Review Volume - 9.75in x 6.5in eloss

10 J. Ghiglieri and D. Teaney

(p, 0)

(p� !,�q?)

(!, q?)

Fig. 2. Schematic Feynman diagram contributing to the leading order collinear bremsstrahlung
rate. Hard gluon lines are labeled by their three momentum (p

z

,p?). The interactions with the
random classical background bath are illustrated by the gluon lines with crosses. Only hard lines
which enter or exit the boxed region are included in an e↵ective Boltzmann description.

locoll

equation as a local rate, it must be understood that the emission process can only
be localized to within a time scale set by the formation time of the radiation. The
inverse formation time will be defined as the energy di↵erence between the initial
and final states

(⌧form)
�1 ⌘ �E(h, p,!) = (E! + Ep�!)� Ep . (32)

Using the dispersion relation for the hard particles this reads

�E(h, p,!) ' h2

2p!(p� !)
+

m2
1!

2!
+

m2
1 p�!

2(p� !)
� m2

1 p

2p
, (33){defdeltaE}

wherem2
1,p is the asymptotic mass of the particle with momentum p, as summarized

in Eq. (8). We have further defined

h ⌘ pq? . (34)

As seen from the figure and described below, h/p is a transverse momentum vector
which is conjugate to the (transverse) coordinate separation x? between the initial
and final states.

The bremsstrahlung rate Ccoll is determined by the rate of transverse momen-
tum kicks (of magnitude q?) which a hard particle experiences traversing the soft
classical fields:

CR(q?) ⌘ lim
p!1

(2⇡)2
d�R(p,p+ q?)

d2q?
. (35){defcq}

Here p is the momentum of the hard particle, which is large (p ! 1) relative to
the the typical momentum, ⇠ gT , of the background fields. The collision kernel
CR can be expressed as a Wilson loop in the (x+, x?) plane evaluated in the clas-
sical background,12,32,33 as sketched in Fig. 3. To motivate the appropriate Wilson
loop we note that the average squared momentum transfer per unit time (i.e. q̂) is



The EKT and jets
(@t + vp ·r)f(p,x, t) = C large[µ?] + Cdi↵ [µ?] + Ccoll

• Study how the distribution of high-energy partons f(p) 
evolves by interacting with a (locally) equilibrated medium

• Leading order implemented in MARTINI 
Schenke Gale Jeon (2009)

• Kinetic picture applicable at later stages of the HIC, when 
the virtuality of the jet has been reduced by vacuum-like 
radation. Higher twist formalism used in the community to 
deal with earlier stages under the influence of a medium

• Future plans: extend the kinetic picture in that direction



Jet quenching
• One of the main results of the HIC program: jets are 

suppressed with respect to proton-proton collisions

• Quantitatively: look at deviations from binary 
scaling

JET Collaboration

Determining q̂ from experimental data JET Collaboration

• q̂ largely determines the rate of radiative energy loss in plasma

• Measure the yield of high momentum particles nucleus-nucleus events

RAA ⌘ dN/dpT yield in nucleus nucleus

dN/dpT yield in proton protonAuthor1 et al. / Nuclear Physics A 00 (2014) 1–4 3
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Figure 1. (Color online) Best fits to the suppression ratios of single hadron spectra in central (0-5%) Au+Au at
�
s = 200 GeV (left panel) and

Pb+Pb collisions at
�
s = 2.76 TeV (right panel) as compared to PHENIX data [14, 15] at RHIC and ALICE [16] and CMS data [17] at LHC.

the extracted values of strong coupling constant �s . The HT models assume that q̂ is independent of jet energy in this
study. The errors within each model are from the �2 fit with one standard deviation. The variation of q̂ values between
di�erent models can be considered as theoretical uncertainties. One therefore can extract its range of values at RHIC
and LHC as:

q̂
T 3
�
�
4.6 ± 1.2 at RHIC,
3.7 ± 1.4 at LHC,

at the highest temperatures reached in the most central Au+Au collisions at RHIC and Pb+Pb collisions at LHC. The
corresponding absolute values for q̂ for a 10 GeV quark jet are,

q̂ �
�
1.2 ± 0.3
1.9 ± 0.7 GeV2/fm at T=370 MeV,

T=470 MeV,

at an initial time �0 = 0.6 fm/c. These values are consistent with LO pQCD estimates, however, with a somewhat
small values of �s as obtained in CUJET, MARTINI and McGill-AMY model. The value of q̂N/T 3eft in cold nuclei as
extracted from jet quenching in DIS [5] is also shown here. The value of q̂N = 0.02 GeV2/fm is an order of magnitude
smaller than that in A+A collisions at RHIC and LHC.

In the immediate future, one should be able to carry out the same analyses at higher LHC energy and some
of the beam scanning energies at RHIC. Shown in Fig. 2 (left panel) as open boxes with question marks are the
predicted values of q̂ at future higher LHC energy and RHIC bean scanning energies. Together with the current values
at the LHC and the highest RHIC energy, one can obtain a rough temperature dependence of q̂/T 3. Furthermore,
comparisons to dihadron and gamma-hadron correlations can provide additional constraints on q̂.

In the long term future, one should develop and implement complete next-to-leading order calculations of parton
energy loss for further reduction of theoretical uncertainties. Though factorization of initial jet production and final-
state parton energy loss is assumed in all studies, it has never been explicitly proven nor illustrated. In a recent study,
the complete NLO calculations of transverse momentum weighted cross sections of semi-inclusive DIS (SIDIS) and
Drell-Yan processes in p+A collisions have been performed for the first time at twist-four [18]. The factorization of the
initial production hard processes and higher-twist matrix elements or q̂ in the final-state has been explicitly illustrated.
Furthermore, the QCD evolution of the twist-four parton correlation matrix which is related to q̂ has been identified.
One therefore can solve the evolution equation and determine the scale dependence of the jet transport parameter q̂.
Such evaluation of q̂ evolution has also been similarly performed [19]. This should be one of the long-term goals of
experimental studies of jet quenching in future high-energy heavy-ion collisions.

As a final remark, I would like to emphasize that q̂ represents the averaged transverse momentum broadening
squared for single partons. Therefore, broadening of dijet correlation in azimuthal angle is only indirectly related to
q̂. In a recent study within Linear Boltzmann Transport (LTB) model, the large angle tail of the dijet correlation is
shown to be sensitive to the value of q̂ [20]. High precision data are needed for any phenomenological study. The most

3

Fit: q̂ ' (3.7 ± 1.4) T 3

RAA =
YieldAA

Yieldpp ⇥Nbin



The EKT and transport 
(@t + vp ·r)f(p,x, t) = C large[µ?] + Cdi↵ [µ?] + Ccoll

• The stress-energy tensor the hydrodynamic limit and in the 
kinetic theory is

• Linearize the EKT around local equilibrium and solve for the 
non-eq. part under the source given by the perturbed local 
equilibrium ⇒ numerical inversion of the collision operator

LO results (shown later) in Arnold Moore Yaffe (AMY) 2000-2003

T 00 = e, T 0i = (e+ p)vi

T ij = (p� ⇣r · v)�ij � ⌘

✓
@iv

j + @jv
i � 2

3
�ijr · v

◆
T ij =

Z
d3p

(2⇡)3
pipj

p
f(p)

f(p,x, t) = feq(p,x, t) + f (1)(p,x, t)



The EKT and transport 
• Linearized EKT equivalent to Kubo formula (S TT part of T)

• Not practical at weak coupling: loop expansion breaks 
down AMY (2000-2003)

• For the SM at T>160 GeV η is dominated by the slowest 
processes, those involving right-handed leptons only

g1 hypercharge coupling with screening mass
AMY (2000-2003)

112 Linear response theory

Now BL(ω = 0,k → 0) = −B00
R (ω = 0,k → 0) = ∂2P/∂µ2

B = ∂nB/∂µB.
(The reasoning is the same as for the electric screening mass.) Further-
more,

BL(ω, |k| → 0) = k̂ik̂ j Bij
R (ω, |k| → 0) (6.151)

where k̂i = ki/|k| is a unit vector in the direction of k. Putting all this
together and using the rotational symmetry yields a linear response for-
mula for the thermal conductivity:

χT =
1
3

(
w

nB

)2

lim
ω→0

1
ω

∫
d4x eiωt

〈[
Ĵ i
B(t,x), Ĵ i

B(0,0)
]〉

θ(t) (6.152)

The factor (w/nB)2 arises in the conversion of baryon current to enthalpy
current. Alternatively, (6.152) could be written in terms of the spectral
densities for the longitudinal part of the baryon response function as

χT =
1
3

(
w

nB

)2

lim
ω→0

1
ω
ρn
L(ω, |k| = 0)

=
1

3T

(
w

nB

)2

lim
ω→0

ρ+
L (ω, |k| = 0) (6.153)

The latter equality follows from the relation ρn = (1 − e−βω)ρ+, as dis-
cussed in Section 6.2.

There are Kubo-type linear-response expressions for the viscosities too.
These may be derived in a way analogous to that for the thermal con-
ductivity since Tµν may be viewed as representing a set of four conserved
currents. One obtains

η =
1
20

lim
ω→0

1
ω

∫
d4x eiωt

〈[
Sij(t,x), Sij(0,0)

]〉
θ(t) (6.154)

ζ =
1
2

lim
ω→0

1
ω

∫
d4x eiωt⟨[P(t,x), P(0,0)]⟩θ(t) (6.155)

where P = −1
3T

i
i represents the trace of the momentum tensor (the pres-

sure in equilibrium) and Sij = T ij − δijP represents the traceless part.
These follow from the dispersion relation for the transverse part of the
momentum density,

ω = −iDSk2 (6.156)

where DS = η/w, and from the dispersion relation for pressure waves,

ω2 − v2
Pk2 + iDPωk2 = 0 (6.157)

⌘ ' 16T 3

g41 ln(5T/mD1)

k ∼ 3T

p ∼ 3T

Figure 1: Processes leading to a logarithmically enhanced graviton production rate. Wiggly lines

denote gauge bosons; arrowed lines fermions; dashed lines scalars; and a double line a graviton. By

k, p ∼ 3T we denote typical momenta of the scattering particles, whereas the filled blob indicates that

the vertical rung carries a soft spacelike momentum transfer (t ∼ −q2
⊥
∼ −g2T 2, where q⊥ · k = 0)

so that the gauge boson needs to be Hard Thermal Loop resummed.

are the most weakly interacting degrees of freedom, changing their momenta only through

reactions mediated by hypercharge gauge fields.

Omitting for the moment all particle species which equilibrate faster than right-handed

leptons, the shear viscosity can be extracted from refs. [37, 38]:

η ≃
16T 3

g41 ln(5T/mD1)
, (4.1)

where mD1 =
√

11/6 g1T is the Debye mass related to the hypercharge gauge field. Inserting

g1 ∼ 0.36 for the gauge coupling we obtain

η ≃ 400T 3 . (4.2)

We use this value for order-of-magnitude estimates below.

If we increase the temperature above 160 GeV, the hypercharge coupling g1 grows and

the weak and strong couplings g2, g3 decrease. Presumably, the top Yukawa coupling ht and

the Higgs self-coupling λ are also of a similar magnitude. In this situation the analysis of

refs. [37, 38] should be generalized to include a scalar field and a more complicated set of

reactions. Even though conceptually straightforward, implementing and solving numerically

the corresponding set of rate equations is a formidable task and beyond the scope of the

present investigation. We note, however, that the shear viscosity is likely to decrease with

increasing g1, so that eq. (4.2) should represent the most “optimistic” estimate from the point

of view of detecting a thermally emitted low-frequency gravitational wave background.

5. Leading-logarithmic production rate at large momentum

Before turning to numerical estimates we wish to complete the qualitative picture concerning

the thermal graviton production rate by considering the case of “hard momenta”, k ∼ 3T . A

full computation of the rate in this regime represents a complicated task, similar to the full
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Hard off−shell
Soft, spacelike, gauge boson, HTL resummed
Hard on−shell, resummed with diagrams of form

, , etc.

FIG. 6: Typical diagram needed in the leading-order evaluation of the shear viscosity in QCD. The

crosses at the left and right denote Tij (stress tensor) insertions.

Leading-order results for transport coefficients may themselves be expanded in powers
of 1/ ln(g−1). We have explicitly computed both leading and first sub-leading terms for
shear viscosity and quark diffusivity in U(1), SU(2), and SU(3) gauge theories with various
numbers of fermion fields (as well as several more terms for three flavor QCD). For QCD,
the next-to-leading log result (with the sub-leading term absorbed by suitably shifting the
scale inside the leading log) was found to be remarkably close to the full leading-order
result as long as mD/T ≤ 1. This is a much larger domain of utility than one might have
expected. For these transport coefficients, we also find that only roughly 10% errors are
made if one neglects near-collinear 1 ↔ 2 particle splitting processes, which are considerably
more difficult to analyze than 2 ↔ 2 particle scattering processes. (However, it should be
noted that some transport coefficients which we have not analyzed, such as bulk viscosity,
depend primarily on particle number-changing processes and so may be expected to depend
essentially on 1 ↔ 2 processes.)

Because the expansion in inverse powers of ln(g−1) is only asymptotic, not convergent, as
demonstrated in Appendix C, we are not able to give a unique, unambiguous prescription for
separating leading-order contributions from higher-order effects. As discussed in Appendix
C, it appears that the inverse log expansion is not Borel summable, which would imply that
no clean separation is possible. In practice, this means that any specific calculation yielding
results of leading-order accuracy will necessarily include some contributions from higher-
order effects. However, our examination of several different prescriptions for computing
leading-order results suggests that this is not a significant issue for mD <∼ 0.8T .

Our tool for studying transport coefficients has been kinetic theory, specifically the effec-
tive kinetic theory presented in our previous paper [22]. As originally shown by Jeon [20],
in the context of weakly-coupled relativistic scalar theories, it is also possible to compute
transport coefficients diagrammatically starting from the appropriate Kubo formulae involv-
ing current-current or stress-stress correlators. Such a diagrammatic approach amounts to a
complicated way to derive the appropriate linearized Boltzmann equation specialized to the
particular symmetry channel of interest. For gauge theories, this diagrammatic approach

23
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Going to NLO



Sources of NLO corrections

• As usual in thermal field theory, the soft scale gT 
introduces NLO O(g) corrections

• The diffusion and the collinear regions receive O(g) 
corrections

• There is a new semi-collinear region

g g

nB(p) ∼ T/p ∼ 1/g



Collinear corrections
• The differential eq. for LPM resummation  gets 

correction from NLO C(q⟂) and from the thermal 
asymptotic mass at NLO (Caron-Huot 2009)

                 complicated but analytical (Euclidean tech)
Caron-Huot PRD79 (2009)

• Now possible to compute it on the lattice too! 
Panero Rummukainen Schäfer PRL112 (2013)

3. Corrections to Bremm:

(a) Small angle bremm. Corrections to AMY coll. kernel. (Caron-Huot)

✓ ⇠ mD/E

Q = (q+, q�, q?) = (gT, g2T , gT )

ˆCLO[q?] =

Tg2m2

D

q2

?(q2

? + m2

D)

! A complicated but analytic formula

(b) Large angle brem and collisions with plasmons.

• Include collisions with energy exchange, q� ⇠ gT .

✓ ⇠
p

mD/E

Q = (q+, q�, q?) = (gT, gT , gT )

The large-angle (semi-collinear radiation) interpolates collisional and rad. loss

CLO(q?) =
g2CATm2

D

q2?(q
2
? +m2

D)

CNLO(q?)



• Now possible to compute it on the lattice too! 
Panero Rummukainen Schäfer PRL112 (2013)

Lattice computation of C(q?): M. Panero et al

V (r) =

Z
d2q?
(2⇡)

2

�
1 � eiq·r� C(q?)
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Fig. 8. Results for C(x�) at two di�erent values of the temperature. The Debye mass used as

a scale for the axes and plugged in the NLO perturbative calculation

12

is the non-perturbative

one.

63

Figure taken from the original reference.

13

The q̂soft extracted in this way also contains a residual logarithmical dependence on

x�, reflecting the leading-order UV divergence of q̂soft (see Eq. (66)) that is absorbed

by the hard contribution. We refer to

13,64
for further details on the matching

procedure and the addition of the leading-order hard contribution.

26
Once this has

been performed, Panero et al. report an estimate for q̂ of 6 GeV

2/fm at their lower

temperature of 398 MeV, with an estimated uncertainty of 15 to 20%. We remark

that higher-order contributions from the hard scale, as well as the possible collinear

contribution mentioned in Sec. 3.3, are absent from this determination.

A possible limitation to the approach we have outlined is that it relies on a

separation of scale between the hard particles, with momenta of order ⇡T , and the

soft and ultrasoft fields, characterized by gT and g2T . However, as the authors

remark, the literature suggests (see for instance

60,65,66
) that analytical computa-

tions relying on this separation of scales may be su�ciently accurate down to low

temperatures, perhaps, suprisingly, down to

67 T ⇠ 2Tc.

It is worth remarking that the NLO perturbative calculation predicts at the

origin a negative linear slope,

p
i.e. ci < 0 in Eq. (78), which is not observed

in the lattice calculation. This can be attributed to discretization errors, which

are more severe at short distances, corresponding to the UV region p� � mD

in momentum space. At leading order in PT, the dominant UV behavior (1/p2
�)

cancels between the longitudinal and transverse one-gluon exchanges, as shown

in Eq. (65), leaving a m2
D/p4

� correction. This cancellation, while exact in the

continuum, is only approximate on the lattice. D’Onofrio, Kurkela and Moore

68

have estimated the associated error to be of order a/x� and hence especially relevant

at short distances. Their computation of the renormalization properties of Eq. (76)

to order a can help alleviating these discretization e�ects.

p

Due to the super-renormalizability of EQCD, each loop order causes a di�erent power-law be-

havior for C, so that higher orders cannot contaminate this e�ect.

y2 x2

x1y1

Figure 2.1: Static Wilson loop with edges y1 = (�TW /2, r/2), x1 = (TW /2, r/2), y2 =
(�TW /2,�r/2) and x2 = (TW /2,�r/2). Time direction is from left to right, thus the
quark trajectories are horizontal and the equal-time endpoint Wilson lines are vertical.

where P is the path-ordering operator and the integration contour ⇤ is represented in
Fig. 2.1. The Wilson loop vacuum amplitude can also be expressed as a path integral

hW⇤i =
Z

DADqDqe�iS(0)
TrP exp

⇢

�ig

I

⇤
dxµAa

µ(x)T a

�

(2.8)

where q and q are the light quark fields and S(0) is the Yang-Mills plus light-quark action
of QCD.
At zeroth order in the multipole expansion (2.3) and in the static limit the corresponding
pNRQCD Green function can be derived from the Lagrangian (1.37)

GpNRQCD = Z(0)
s (r)�3(x1 � y1)�3(x2 � y2)e�iT

W

V
(0)
s

(r). (2.9)

We now need to single out the soft scale: exploiting the fact that this scale is much
greater than the ultrasoft scale E we can consider the large TW limit of the Wilson loop,
equivalent to the �E ! 0 limit. We thus have

i

TW
loghW⇤i = u0(r) + i

u1(r)
TW

+O
✓

1
T 2

W

◆

, (2.10)

and in the infinite-time limit the higher-order terms in the 1/TW expansion are sup-
pressed. We have also dropped terms that do not depend on r, such as self energies.
These terms can arise both in the perturbative and non-perturbative regions, but are
not relevant for the potential. The matching condition GNRQCD = GpNRQCD at the
matching scale µ (the two theories and their Green functions are of course in general
not equal; they are so only in the region where pNRQCD exists) then implies

(

V (0)
s (r) = u0(r)

log Z(0)
s (r) = u1(r)

(2.11)

So we see that the potential at this order of the multipole expansion is simply linked to
the vacuum expectation value of the Wilson loop by the relation

V (0)
s (r) = u0(r) = � lim

T
W

!1

1
iTW

loghW⇤i. (2.12)
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Collinear case

Collinear ⇒ almost on-shell ⇒ large x separation

x− ≪ x⊥ ≪ x+
(1/T ≪ 1/gT ≪ 1/g2T )

Consider spacetime trajectory of q, q̄:

Jµ Jµ

x

x

Trajectory in

Trajectory in

M

M

Wilson Loop Controls
Gauge Interactions

Need x⊥-separated Wilson loop.

Spacetime picture pioneered by B. Zakharov, hep-ph/9607440,9807540
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Diffusion corrections
• At NLO one has these diagrams

• For transverse: Euclidean calculation Caron-Huot PRD79 (2009)

• For longitudinal:

light-cone sum rule still sees only dispersion relation (with O(g) 
correction). NLO correction UV-log sensitive

with cuto↵ �E

µ

= (µNLO
? )2|p|/(2|k(p� k)|) (with some care on the sign of pk(p� k)) we have
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so that Eq. (64) turns into
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.(73) {jmsemicolltrans}

For µNLO
? ! 0 Eq. (65) is recovered.

A Longitudinal momentum di↵usion at NLO
{app_nlo}

Some comments: I have not analyzed HTL vertices (the photon lesson should do) and I have not
explicitly checked the cancellation of the “Coulomb gauge poles” at p+ = p

�
/2± ip? (p2 = 0).

A.1 The rainbow diagram

P

Q

Figure 3: The rainbow diagram {fig_rainbow}

19

where we have used the symmetries of the integrand to express the leading-order term as a �

function of q�.
We now inspect the second term, labeled s

q̂
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When deforming on C
R

and C
A

we have
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The p

� integration can be performed as before, yielding
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which goes like 1/(p+)2 and hence is irrelevant. This can be easily understood by noting that
the pinched poles in p

� force p

� ⇠ 1/p+, so that the factor of p�/p+ of this term with respect
to Eq. (77) behaves like 1/(p+)2.

Finally, we look at the Euclidean term, labeled e
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which becomes
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We need not go any further with its evaluation, at least for now.

A.2 The crossed self-energy

P

Q

Figure 4: The crossed rainbow diagram {fig_cross}
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P

Q

P +Q

Figure 5: The cat-eye diagram {fig_cateye}

A.3 The cat eye

The amplitude reads, with label c
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where I have defined the three-gluon vertex as

gf

abc�µ⌫⇢(P,Q,K) ⌘ �gf

abc [gµ⌫(P �Q)⇢ + g

⌫⇢(Q�K)µ + g

⇢µ(K � P )⌫ ] , (90) {threegluon}

where P,Q,K are all inflowing in the vertex, P is associated with a and µ and similarly for the
others. Taking the coordinate integration gives
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Let us look at the r/a structure of the propagators. Neglecting Lorentz indices the terms in
square brackets can be rewritten as
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which yields
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The second term on the bottom line vanishes under the p

+ integration, as it is odd. Similarly,
the first term yields
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which vanishes, as the p

+ integration can only pick up the residue of the Coulomb gauge poles,
which is O(�Ep) and thus makes the q

+ integration vanish.
Finally, terms with p

� or p� + q

� at the numerator in Eq. (92) vanish again for the loss of
p

+ at the numerator and of a pinched pole at the denominator. The last term trivially vanishes.
The entire result is hence given by Eq. (97).

A.4 Self-energy diagrams

We analyze separately the two diagrams show in Fig. 6, the loop diagram on the left and the
tadpole diagram on the right.

P

Q

P +Q P

Q

Figure 6: The loop diagram on the left and the tadpole diagram on the right. {fig_loop}

A.4.1 The loop diagram

The amplitude is labeled by s and reads
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• Seemingly different processes boiling down to wider-angle 
radiation

• Evaluation: introduce “modified    ” tracking the changes in the 
small light-cone component p- of the gluons. Can be evaluated 
in EQCD

• Rate ∝ “modified    ” x DGLAP splitting. IR log divergence 
makes collision operator finite at NLO

Semi-collinear processes

q̂

“standard”

“modified”

K soft cut, 
spacelike

q̂

K soft plasmon, 
timelike

January 28, 2015 15:23 World Scientific Review Volume - 9.75in x 6.5in eloss
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Hence we obtain

�q̂L = g2CRT
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#
, (89){finallongdiffnlo}

where we have introduced a regulator µNLO. As we will show, the semi-collinear
region will remove the dependence on it, so that it should be taken to obey gT ⌧
µNLO ⌧ p

gT .

5.3. The semi-collinear region
{sec_semi}

As we anticipated before, semi-collinear processes can be seen as 1 $ 2 splitting
processes where the opening angle (and hence the virtuality) are larger. Two exam-
ples are drawn in Fig. 11. The scalings of this region are as follows: K ⇠ gT is soft,

p
g

p
g

K

K

P �Q

Q+K

P �Q

Q+K

Fig. 11. Diagrams for two typical semi-collinear processes. In the first case the soft gluon is in
the spacelike Landau cut, whereas in the second case it is on its timelike plasmon pole, represented
by the black blob. {fig_semicoll}

whereas the two final-state particles are collinear, albeit with an increased virtuality
and opening angle with respect to the collinear sector. The leading contribution
then comes from q+ ⇠ T, q� ⇠ gT, q2? ⇠ gT 2, Q2 ⇠ gT 2.

Naive power-counting arguments would suggest that the semi-collinear region
should contribute to leading order, as it is the largest slice of phase space where a soft
gluon can attach to a 1 $ 2 process. However, once all diagrams are summed and
squared, a cancellation, first noticed in the context of photon radiation,30 introduces
an extra O(g) suppression. Furthermore, since K ⇠ gT in all components, the
contribution from timelike soft gluons, e.g. plasmons, is now allowed. This is
contrasted by the collinear region, where kinematics enforce k� ⇠ �E ⇠ g2T ⌧
k+, k?, thus restricting soft gluons to the space-like domain only.

The contribution �Csemi�coll to the collision operator can be written in the same
way as the collinear one, as given by Eq. (42), with the replacement of the collinear

q̂ =g2CA
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• Computing transport coefficients (η) requires knowing how a 
Tij disturbance induces a second Tij disturbance

• The challenge is again in the soft regions

• No diffusion picture =  no “easy” light-cone sum rules, only 
bruteforce HTL. Silver lining: they’re finite, so just estimate 
the number and vary it. NLO  test ansatz: LO cross x mD/
T(~g) x arbitrary constant that we vary

A missing subtlety

Q Q

Tij insertions on the 
same side, momenta 
correlated. Diffusion 

picture applies

Tij insertions on 
opposite sides, 

momenta uncorrelated. 
Diffusion picture does 

not apply

Ccross
NLO = Ccross

LO ⇥ mD

T
⇥ ccross
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Results
• Inversion of the collision operator using variational Ansatz

• At NLO just add O(g) corrections to the LO collision 
operator, do not treat them as perturbations in the inversion

• Kinetic theory with massless quarks still conformal to NLO

• Relate parameter mD/T~g to temperature through two-loop 
g(T) as in Laine Schröder JHEP0503 (2005)

• Degree of arbitrariness in the choice of quark mass 
thresholds, test several values of "/T

JG Moore Teaney, soon
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• All known NLO terms, no cross ansatz yet
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• Cross ansatz introduces O(±30%)  uncertainty  
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η/s convergence

• The ~entirety of the downward shift comes from NLO 
O(g) corrections to 
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Conclusions
• Effective kinetic theory of hard quasi-particles and a 

soft background

• Can be employed to describe jets, transport coefficients 
and thermalization

• The interactions with the soft background are encoded 
in Wilson-line operators, which 

• can be evaluated more easily through the analytic 
properties of light-like amplitude

• some of them can now be computed on the lattice



• NLO corrections are large, η down by a factor of ~5 in the 
phenomenological region

• Convergence below mD~0.5T

• Quark number diffusion coefficient D and second-order 
hydro τΠ will be available in the papers

• Corrections dominated by NLO     . Could it be that 
observables directly sensitive to transverse momentum 
broadening show bad convergence and those who are not 
show good convergence? Why? 
#statisticswithsmallnumbers

q̂

Conclusions
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LPM resummation

• All points at spacelike or lightlike separation, only 
preexisting correlations

• Soft contribution becomes Euclidean! Caron-Huot PRD79 
(2008)

• Can be “easily” computed in perturbation theory 

• Possible lattice measurements Laine EPJC72 (2012) Laine 
Rothkopf JHEP1307 (2013) Panero Rummukainen Schäfer 1307.5850

y2 x2

x1y1

Figure 2.1: Static Wilson loop with edges y1 = (�TW /2, r/2), x1 = (TW /2, r/2), y2 =
(�TW /2,�r/2) and x2 = (TW /2,�r/2). Time direction is from left to right, thus the
quark trajectories are horizontal and the equal-time endpoint Wilson lines are vertical.

where P is the path-ordering operator and the integration contour ⇤ is represented in
Fig. 2.1. The Wilson loop vacuum amplitude can also be expressed as a path integral

hW⇤i =
Z

DADqDqe�iS(0)
TrP exp

⇢

�ig

I

⇤
dxµAa

µ(x)T a

�

(2.8)

where q and q are the light quark fields and S(0) is the Yang-Mills plus light-quark action
of QCD.
At zeroth order in the multipole expansion (2.3) and in the static limit the corresponding
pNRQCD Green function can be derived from the Lagrangian (1.37)

GpNRQCD = Z(0)
s (r)�3(x1 � y1)�3(x2 � y2)e�iT

W

V
(0)
s

(r). (2.9)

We now need to single out the soft scale: exploiting the fact that this scale is much
greater than the ultrasoft scale E we can consider the large TW limit of the Wilson loop,
equivalent to the �E ! 0 limit. We thus have

i

TW
loghW⇤i = u0(r) + i

u1(r)
TW

+O
✓

1
T 2

W

◆

, (2.10)

and in the infinite-time limit the higher-order terms in the 1/TW expansion are sup-
pressed. We have also dropped terms that do not depend on r, such as self energies.
These terms can arise both in the perturbative and non-perturbative regions, but are
not relevant for the potential. The matching condition GNRQCD = GpNRQCD at the
matching scale µ (the two theories and their Green functions are of course in general
not equal; they are so only in the region where pNRQCD exists) then implies

(

V (0)
s (r) = u0(r)

log Z(0)
s (r) = u1(r)

(2.11)

So we see that the potential at this order of the multipole expansion is simply linked to
the vacuum expectation value of the Wilson loop by the relation

V (0)
s (r) = u0(r) = � lim

T
W

!1

1
iTW

loghW⇤i. (2.12)

22

Collinear case

Collinear ⇒ almost on-shell ⇒ large x separation

x− ≪ x⊥ ≪ x+
(1/T ≪ 1/gT ≪ 1/g2T )

Consider spacetime trajectory of q, q̄:

Jµ Jµ

x

x

Trajectory in

Trajectory in

M

M

Wilson Loop Controls
Gauge Interactions

Need x⊥-separated Wilson loop.

Spacetime picture pioneered by B. Zakharov, hep-ph/9607440,9807540

XQCD, Bern, 4 Aug. 2013: Seite 14 von 25
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BDMPS-Z, Wiedemann, Casalderrey-Solana Salgado, D’Eramo Liu 
Rajagopal, Benzke Brambilla Escobedo Vairo



Longitudinal momentum diffusion
• Field-theoretical lightcone definition (justifiable with SCET)

F+-=Ez, longitudinal Lorentz force correlator

• At leading order

q̂L ⌘ g

2

dR

Z +1

�1
dx

+Tr
⌦
U(�1, x

+)F+�(x+)U(x+
, 0)F+�(0)U(0,�1)

↵

q̂L /
Z

dq+d2q?
(2⇡)3

(q+)2G>
++(q

+, q?, 0)

=

Z
dq+d2q?
(2⇡)3

Tq+(GR
++(q

+, q?, 0)�GA)

Wilson lines in the x� lightcone directions at x+ = �1, irrelevant in non-singular

gauges, are discussed in App. B.

We now evaluate Eq. (3.16) at LO: we simply contract the two F fields, obtaining

a forward Wightman correlator, i.e. the diagram shown in Fig. 6, which reads

Figure 6. The leading-order soft contribution to q̂L. The Wilson lines before and after the two
black dots, which represent the F+� vertices, cancel at leading order, whereas the one between
the two dots always turns into an adjoint line, which we have represented as a double line. The
curly line is a soft HTL gluon. {fig_lo_soft}

q̂
L

�

�

�

�

LO soft

= g2C
R

Z +1

�1
dx+

Z

d4Q

(2⇡)4
e�iq

�
x

+
(q+)2G��>(Q), (3.18) {lo}

where G(Q) is the HTL-resummed propagator and the integral is understood to run over

soft momenta only. The x+ integration sets q� to zero and, as we show in App. C, bring

this expression in agreement with the one obtained from the rate-based definition in

Eq. (3.11). Furthermore, only the even-in-q+ part of G>(q+, q� = 0, q?) can contribute,

which is the same for G> and G< and is given by G
rr

. It is furthermore dominated

by the T/q0 = T/q+ leading infrared piece of the Bose–Einstein distribution. Upon

expanding it we have, up to O(g2) correction,

q̂
L

�

�

�

�

LO soft

= g2C
R

Z

dq+d2q?
(2⇡)3

Tq+(G��
R

(q+, q?)�G��
A

(q+, q?)). (3.19) {lo2}

We can perform the q+ integration by resorting to the analyticity sum rule techniques

developed in [2, 12]. Since retarded (advanced) two-point functions are analytic in

the upper (lower) half-plane in any timelike or light-like variable, we can deform the

integration contours away from the real axis onto C
R

(|q+| = µ
!

� gT , Im q+ > 0) and

C
A

(|q+| = µ
!

� gT , Im q+ < 0), as depicted in Fig. 7. Along the arcs the longitudinal

and transverse propagators simplify greatly, i.e.

G��
R

(P ) ! i

(q+)2

✓

1 +
q�

q+

◆

2q+q� �M2
1

2q+q� � q2? �M2
1

�

�

�

�

R

, (3.20) {arcexpand}

where M2
1 = m2

D/2 is the gluon asymptotic thermal mass. The end result is then

q̂
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LO soft

= g2C
R
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d2q?
(2⇡)2

M2
1

q2? +M2
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1 ln
µ
q̃?

M1
, (3.21) {lofinal}
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Longitudinal momentum diffusion
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Longitudinal momentum diffusion

• Use analyticity to deform the contour away from the real 
axis and keep 1/q+ behaviour
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