Computing jet quenching and the transport coefficients of the Quark-Gluon Plasma

Jacopo Ghiglieri, CERN Theory Colloquium, Torino, June 9 2017

Outline

- Jets and transport in heavy ion collisions
- A modern approach to an effective kinetic theory for jets and transport
- Incorporating NLO (O(g)) and non-perturbative effects: testing the stability of these perturbative results

Pedagogical review in JG Teaney **1502.03730** (in QGP5) Gritty details for jets in JG Moore Teaney **1509.07773** NLO transport JG Moore Teaney, in preparation

Overview

The phase diagram of QCD

• In the temperature / baryon chemical potential plane:

- At low temperature and moderate densities: ordinary hadrons and nuclear matter.
- Colour confinement

The quark-gluon plasma

• As the temperature is increased:

The quark-gluon plasma

• As the temperature is increased:

- In the upper-left region, lattice QCD indicates a (pseudo)critical temperature T_c~160 MeV ~2x10¹² K
- For comparison, sun's core: *T*~1.5x10⁷ K

The quark-gluon plasma

• As the temperature is increased:

- In the upper-left region, lattice QCD indicates a (pseudo)critical temperature T_c~160 MeV ~2x10¹² K
- For comparison, sun's core: *T*~1.5x10⁷ K

• A (transient) QGP can be formed in heavy ion collision experiments. RHIC (@BNL), up to $\sqrt{s_{NN}}$ =200GeV. LHC up to $\sqrt{s_{NN}}$ =5.5 TeV (5 so far).

• A (transient) QGP can be formed in heavy ion collision experiments. RHIC (@BNL), up to $\sqrt{s_{NN}}$ =200GeV. LHC up to $\sqrt{s_{NN}}$ =5.5 TeV (5 so far).

• Two Lorentz-contracted nuclei

• A (transient) QGP can be formed in heavy ion collision experiments. RHIC (@BNL), up to $\sqrt{s_{NN}}$ =200GeV. LHC up to $\sqrt{s_{NN}}$ =5.5 TeV (5 so far).

Two Lorentz-contracted nuclei collide

• A (transient) QGP can be formed in heavy ion collision experiments. RHIC (@BNL), up to $\sqrt{s_{NN}}$ =200GeV. LHC up to $\sqrt{s_{NN}}$ =5.5 TeV (5 so far).

- Two Lorentz-contracted nuclei collide
- Rapid formation of a near-thermal QGP (~1 fm/c)

• A (transient) QGP can be formed in heavy ion collision experiments. RHIC (@BNL), up to $\sqrt{s_{NN}}$ =200GeV. LHC up to $\sqrt{s_{NN}}$ =5.5 TeV (5 so far).

- Two Lorentz-contracted nuclei collide
- Rapid formation of a near-thermal QGP (~1 fm/c)
- Expansion and cooling for up to 5-10 fm/c, then

• A (transient) QGP can be formed in heavy ion collision experiments. RHIC (@BNL), up to $\sqrt{s_{NN}}$ =200GeV. LHC up to $\sqrt{s_{NN}}$ =5.5 TeV (5 so far).

- Two Lorentz-contracted nuclei collide
- Rapid formation of a near-thermal QGP (~1 fm/c)
- Expansion and cooling for up to 5-10 fm/c, then
- Hadronizazion

• A (transient) QGP can be formed in heavy ion collision experiments. RHIC (@BNL), up to $\sqrt{s_{NN}}$ =200GeV. LHC up to $\sqrt{s_{NN}}$ =5.5 TeV (5 so far).

- Two Lorentz-contracted nuclei collide
- Rapid formation of a near-thermal QGP (~1 fm/c)
- Expansion and cooling for up to 5-10 fm/c, then
- Hadronizazion
- Lots of particles ($dN_{ch}/dy O(1000)$) stream to the detectors

Characterizing the QGP

- Characterization of the medium through **two** classes of observables
 - **Bulk** properties: "macroscopic" evolution of the fireball effectively described by hydrodynamics. The QGP behaves as a strongly coupled, almost ideal fluid
 - **Hard probes:** *high-energy* particles *not in equilibrium* with the medium (jets, e/m probes, quarkonia...).
- Medium *tomography* and characterization of its properties, such as temperature, deconfinement, χ -sym restoration...

Jet quenching

- One of the main results of the HIC program: jets are suppressed with respect to proton-proton collisions
- Quantitatively: look at deviations from binary

Jets quenching

 Qualitatively striking aspect: the dijet asymmetry

CMS PRC84 (2011)

Flow: a bulk property

- Initial asymmetries in position space are converted by collective, macroscopic (many body) processes into final state momentum space asymmetries
- Quantitatively: azimuthal Fourier decomposition of the final state particle spectra

$$\frac{dN_i}{dy \, d^2 p_T} = \frac{dN_i}{2\pi p_T dP_T dy} \left(1 + \sum_{n=1}^{\infty} 2v_{i,n}(p_T, y) \cos(n\phi) \right)$$

vzero amplitude + v_n coefficients

• 2D analogue of the multipole expansion of the CMB

• Hydrodynamics describes the buildup of flow. The shear viscosity parametrizes the efficiency of the conversion

Hydrodynamics

- Field theories admit a long-wavelength hydrodynamical limit. Hydrodynamics: Effective Theory based on a gradient expansion of the flow velocity
- For hydro fluctuations with local flow velocity **v** around an equilibrium state (with temp. *T*), at first order in the gradients and in **v**

$$T^{00} = e, \qquad T^{0i} = (e+p)v^i$$
$$T^{ij} = (p - \zeta \nabla \cdot \mathbf{v})\delta^{ij} - \eta \left(\partial_i v^j + \partial_j v^i - \frac{2}{3}\delta^{ij} \nabla \cdot \mathbf{v}\right)$$

Navier-Stokes hydro, two *transport coefficients*: bulk and shear viscosity

• Finite shear viscosity smears out flow differences (diffusion)

Hydro meets data

Description of initial state also very important
 Gale Jeon Schenke Tribedy Venugopalan PRL110 (2013)

The shear viscosity, being dissipative, smears out flow differences and makes the position→momentum conversion less efficient
 Plot from Luzum Romatschke PRC78 (2008)

Hydro meets data

 Current hydro analyses now sensitive to the temperature dependence of the shear viscosity Niemi Eskola Paatelainen 1505.02677

Estimating η : counterintuitive?

 Weak coupling: long distances between
 collisions, easy
 diffusion. Large η

 Strong coupling: short distances between collisions, little diffusion. Small η

Estimating η (or why is η /s natural)

• *u* flow velocity, *v*_x microscopical velocity of particles

• Using e + p = sT and in the high-*T* limit ($v^x \sim 1$)

$$rac{\eta}{s} \sim T l_{
m mfp}$$

Estimating η (or why is η /s natural)

• (Mean free path)⁻¹~ cross section x density

 η

$$\frac{-}{s} \sim I t_{\rm mfp} \sim \frac{-}{n\sigma} \sim \frac{-}{T^2\sigma}$$

Cross section in a perturbative gauge theory (T only scale*)

$$\sigma \sim \frac{g^4}{T^2} \qquad \frac{\eta}{s} \sim \frac{1}{g^4}$$

* Coulomb divergences and screening scales ($m_D \sim gT$) in gauge theories

$$\sigma \sim \frac{g^4}{T^2} \ln(1/g) \qquad \frac{\eta}{s} \sim \frac{1}{g^4 \ln(1/g)}$$

From holography one instead has η/s=1/(4π) (for N = 4 SYM) and a conjectured lower limit
 Kovtun Son Starinets Policastro PRL87 (2001) PLR94 (2004)

The effective kinetic theory

pQCD: QCD action (and EFTs thereof). Can be done both in and out of equilibrium. Real world: extrapolate from $g \ll 1$ to $\alpha_s \sim 0.3$

pQCD: QCD action (and EFTs thereof). Can be done both in and out of equilibrium. Real world: extrapolate from $g \ll 1$ to $\alpha_s \sim 0.3$

lattice QCD: Euclidean QCD action, equilibrium

Real world: analytically continue to +..owskian domain

pQCD: QCD action (and EFTs thereof). Can be done both in and out of equilibrium. Real world: extrapolate from $g \ll 1$ to $\alpha_s \sim 0.3$

In attice QCD: Euclidean QCD action, equilibrium

Real world: analytically continue to +..owskian domain

AdS/CFT: $\mathcal{N}=4$ action, in and out of equilibrium, weak and strong coupling. Real world: extrapolate to QCD

The weak-coupling picture

onic soft fields have large occupa

 The gluonic soft fields have large occupation numbers ⇒ they can be treated classically

$$n_{\rm B}(\omega) = \frac{1}{e^{\omega/T} - 1} \stackrel{\omega \sim gT}{\simeq} \frac{T}{\omega} \sim \frac{1}{g}$$

Weak-coupling thermodynamics

Mogliacci Andersen Strickland Su Vuorinen JHEP1312 (2013)

 Successful for static (thermodynamical) quantities.
 Possibility of solving the soft sector non-perturbatively (dimensionally-reduced theory on the lattice)

The effective kinetic theory

Baym Braaten Pisarski Arnold Moore Yaffe Baier Dokshitzer Mueller Schiff Son Peigné Wiedemann Gyulassy Wang Aurenche Gelis Zaraket Blaizot Iancu . . .

The effective kinetic theory

- Justified at weak coupling, but can be extended to factor in non-perturbative contributions (in progress, more later)
- The effective theory is obtained by integrating out (off-shell) quantum fluctuations (for instance from Kadanoff-Baym equations). Appropriate for describing the dynamics of excitations on scales large compared to 1/T, which is the size of the typical de Broglie wavelength of an excitation.
- Boltzmann equation for the single-particle phase spacedistribution: its convective derivative equals a collision operator

$$(\partial_t + \mathbf{v_p} \cdot \nabla) f(\mathbf{p}, \mathbf{x}, t) = C[f]$$

The effective kinetic theory

- The effective theory is obtained by integrating out (off-shell) quantum fluctuations (for instance from Kadanoff-Baym equations). Appropriate for describing the dynamics of excitations on scales large compared to *1/T*, which is the size of the typical de Broglie wavelength of an excitation.
- Boltzmann equation for the single-particle phase spacedistribution: its convective derivative equals a collision operator $(\partial_t + \mathbf{v_p} \cdot \nabla) f(\mathbf{p}, \mathbf{x}, t) = C[f]$
- In other words at weak coupling the underlying QFT has well-defined quasi-particles. These are weakly interacting with a *mean free time* (1/g⁴T) *large compared to the actual duration of an individual collision* (1/T)

- A modern approach to the (LO) collision operator $(\partial_t + \mathbf{v_p} \cdot \nabla) f(\mathbf{p}, \mathbf{x}, t) = C^{\text{large}}[\mu_{\perp}] + C^{\text{diff}}[\mu_{\perp}] + C^{\text{coll}}$
- For illustration purposes, quarks are omitted from the plasma in this talk

- A modern approach to the (LO) collision operator $(\partial_t + \mathbf{v_p} \cdot \nabla) f(\mathbf{p}, \mathbf{x}, t) = C^{\text{large}}[\mu_{\perp}] + C^{\text{diff}}[\mu_{\perp}] + C^{\text{coll}}$ $C^{\text{large}}[\mu_{\perp}] = \frac{1}{4p\nu_g} \sum_{bcd} \int_{\mathbf{kp'k'}} |\mathcal{M}_{cd}^{ab}|^2 (2\pi)^4 \delta^{(4)} (P + K - P' - K') \theta(q_{\perp} - \mu_{\perp})$ $\times \{ f_{\mathbf{p}} f_{\mathbf{k}} [1 + f'_{\mathbf{p}}] [1 + f'_{\mathbf{k}}] - f'_{\mathbf{p}} f'_{\mathbf{k}} [1 + f_{\mathbf{p}}] [1 + f_{\mathbf{k}}] \}$
- 2↔2 processes with large momentum transfer
- Loss gain structure
- *Q*>*gT*, *O*(1) deflection angles
- Need to exclude the IR with a cutoff μ_{\perp}
- Logarithmic sensitivity to the cutoff⇒
 Can use bare matrix elements

- A modern approach to the (LO) collision operator $(\partial_t + \mathbf{v_p} \cdot \nabla) f(\mathbf{p}, \mathbf{x}, t) = C^{\text{large}}[\mu_{\perp}] + C^{\text{diff}}[\mu_{\perp}] + C^{\text{coll}}$
- How to deal with the soft *Q* region?
- Older approach: dressing the intermediate propagator with Hard Thermal Loops for IR finiteness Braaten Pisarski, Ar pore Kaffee (A MLY) lasma response $Q \sim T$ when Q is soft
- Hard Thermal Loop essummation of 1-loop hard offshell loops into soft propagators (and vertices). Rich structure $m_D^2 = g^2 T^2 (N_c/3 + n_f/6)$

$$\begin{aligned} G_R^{00}(\omega, \mathbf{q}) &= \frac{i\eta^{00}}{q^2 + \Pi_L(\omega/q)} & \Pi_L = m_D^2 \left(1 - \frac{\omega}{2q} \log\left(\frac{\omega+q}{\omega-q}\right) \right) \\ G_R^{ij}(\omega, \mathbf{q}) &= \frac{-i(\delta^{ij} - \hat{q}^i \hat{q}^j)}{-(q^0)^2 + q^2 + \Pi_T(\omega/q)} & \Pi_T = \frac{m_D^2}{2} \left(\left(\frac{\omega}{q}\right)^2 - \frac{(\omega^2 - q^2)\omega}{2q^3} \log\left(\frac{\omega+q}{\omega-q}\right) \right) \end{aligned}$$

- A modern approach to the (LO) collision operator $(\partial_t + \mathbf{v_p} \cdot \nabla) f(\mathbf{p}, \mathbf{x}, t) = C^{\text{large}}[\mu_{\perp}] + C^{\text{diff}}[\mu_{\perp}] + C^{\text{coll}}$
- New approach: **diffusion.** Fokker-Planck drag limit for small *Q*, with the soft background factored into Wilson-line operators

$$C^{\text{diff}}[\mu_{\perp}] = \frac{\partial}{\partial p^{i}} \left[\eta_{D}(p) p^{i} f(\mathbf{p}) \right] + \frac{1}{2} \frac{\partial^{2}}{\partial p^{i} \partial p^{j}} \left[\left(\hat{p}^{i} \hat{p}^{j} \hat{q}_{L}(\mu_{\perp}) + \frac{1}{2} (\delta^{ij} - \hat{p}^{i} \hat{p}^{j}) \hat{q}(\mu_{\perp}) \right) f(\mathbf{p}) \right]$$

- Three operators:
 - Transverse momentum broadening
 - Longitudinal momentum broadening
 - Drag

Momentum broadening

- In this soft background the lightlike particle experiences a "force" $\mathcal{F}^{i}(x^{+}) \equiv U^{\dagger}(x^{+}, -\infty) g F^{i\mu}(x^{+}) v_{\mu} U(x^{+}, -\infty)$ field strength dressed by Wilson lines on the light cone
- Momentum broadening is then given by

$$\hat{q}^{ij} \equiv \frac{1}{d_R} \int_{-\infty}^{+\infty} dt' \left\langle \mathcal{F}^i(t) \mathcal{F}^j(0) \right\rangle$$

- Rigorous formulation from SCET possible Benzke Brambilla Escobedo Vairo JHEP1302 (2013)
- At leading order: integrals over HTL propagator?

Momentum broadening

 $\mathcal{F}^{i}(x^{+}) \equiv U^{\dagger}(x^{+}, -\infty) g F^{i\mu}(x^{+}) v_{\mu} U(x^{+}, -\infty) \qquad \hat{q}^{ij} \equiv \frac{1}{d_{R}} \int_{-\infty}^{+\infty} dt' \left\langle \mathcal{F}^{i}(t) \mathcal{F}^{j}(0) \right\rangle$

- Breakthrough over the past ~10 years. Heuristically, the hard, light-like parton sees undisturbed soft modes, which "*can't keep up*" with it (up to O(g²) suppressed collinear effects)
- Mathematically, this translates into analytical properties of retarded and advanced correlators at light-like momenta
- In transverse diffusion: dimensional reduction becomes applicable

$$\hat{q}(\mu_{\perp}) = g^2 C_A \int^{\mu_{\perp}} \frac{d^2 q_{\perp}}{(2\pi)^2} \int \frac{dq^+}{2\pi} \langle F^{-\perp}(Q) F^-_{\perp} \rangle_{q^-=0}$$
$$= g^2 C_A T \int^{\mu_{\perp}} \frac{d^2 q_{\perp}}{(2\pi)^2} q_{\perp}^2 \left(\frac{1}{q_{\perp}^2} - \frac{1}{q_{\perp}^2 + m_D^2}\right) = \frac{g^2 C_A T m_D^2}{2\pi} \ln \frac{\mu_{\perp}}{m_D}$$

Caron-Huot **PRD79** (2008)

Momentum broadening

 $\mathcal{F}^{i}(x^{+}) \equiv U^{\dagger}(x^{+}, -\infty) g F^{i\mu}(x^{+}) v_{\mu} U(x^{+}, -\infty) \qquad \hat{q}^{ij} \equiv \frac{1}{d_{R}} \int_{-\infty}^{+\infty} dt' \left\langle \mathcal{F}^{i}(t) \mathcal{F}^{j}(0) \right\rangle$

- Breakthrough over the past ~10 years. Heuristically, the hard, light-like parton sees undisturbed soft modes, which "*can't keep up*" with it (up to O(g²) suppressed collinear effects)
- Mathematically, this translates into analytical properties of retarded and advanced correlators at light-like momenta
- In longitudinal diffusion: sensitive only to $\omega \approx q \gg gT$ dispersion relation $\omega^2 - q^2 - m_{\infty}^2 = 0$, $m_{\infty}^2 = m_D^2/2$

$$\hat{q}_{L}(\mu_{\perp}) = g^{2}C_{A} \int^{\mu_{\perp}} \frac{d^{2}q_{\perp}}{(2\pi)^{2}} \int \frac{dq^{+}}{2\pi} \langle F^{-z}(Q)F^{-z} \rangle_{q^{-}=0}$$
$$= g^{2}C_{A}T \int^{\mu_{\perp}} \frac{d^{2}q_{\perp}}{(2\pi)^{2}} \left(1 - \frac{q_{\perp}^{2}}{q_{\perp}^{2} + m_{\infty}^{2}}\right) = \frac{g^{2}C_{A}Tm_{\infty}^{2}}{2\pi} \ln \frac{\mu_{\perp}}{m_{D}}$$

JG Moore Teaney

• A modern approach to the (LO) collision operator $(\partial_t + \mathbf{v}_{\mathbf{p}} \cdot \boldsymbol{\nabla}) f(\mathbf{p}, \mathbf{x}, t) = C^{\text{large}}[\mu_{\perp}] + C^{\text{diff}}[\mu_{\perp}] + C^{\text{coll}}$

$$C^{\text{diff}}[\mu_{\perp}] = \frac{\partial}{\partial p^{i}} \left[\eta_{D}(p) p^{i} f(\mathbf{p}) \right] + \frac{1}{2} \frac{\partial^{2}}{\partial p^{i} \partial p^{j}} \left[\left(\hat{p}^{i} \hat{p}^{j} \hat{q}_{L}(\mu_{\perp}) + \frac{1}{2} (\delta^{ij} - \hat{p}^{i} \hat{p}^{j}) \hat{q}(\mu_{\perp}) \right) f(\mathbf{p}) \right]$$

Drag: related by Einstein-like relation to momentum broadening

$$\eta_D(p) = \frac{\hat{q}_L}{2Tp} + \mathcal{O}\left(\frac{1}{p^2}\right)$$

 In the end, cutoff dependence vanishes between diffusion and large-angle scatterings

• A modern approach to the (LO) collision operator

 $(\partial_t + \mathbf{v}_{\mathbf{p}} \cdot \nabla) f(\mathbf{p}, \mathbf{x}, t) = C^{\text{large}}[\mu_{\perp}] + C^{\text{diff}}[\mu_{\perp}] + C^{\text{coll}}$

- Collinear splitting/joining induced by soft scatterings with the medium constituents
- Apparently suppressed by powers of g but

 $(\omega, \boldsymbol{q}_{\perp})$

- Soft and collinear enhancements cancel the suppression
- Mean free time between soft collisions (1/g²T) of the same order of formation time ⇒ interference of many such scatterings (Landau-Pomeranchuk-Migdal effect)
 Baier Dokshitzer Mueller Schiff Son Zakharov Arnold Moore Yaffe

The EKT and jets

$$(\partial_t + \mathbf{v}_{\mathbf{p}} \cdot \boldsymbol{\nabla}) f(\mathbf{p}, \mathbf{x}, t) = C^{\text{large}}[\mu_{\perp}] + C^{\text{diff}}[\mu_{\perp}] + C^{\text{coll}}$$

- Study how the distribution of high-energy partons *f*(**p**) evolves by interacting with a (locally) equilibrated medium
- Leading order implemented in MARTINI Schenke Gale Jeon (2009)
- Kinetic picture applicable at later stages of the HIC, when the virtuality of the jet has been reduced by vacuum-like radation. Higher twist formalism used in the community to deal with earlier stages under the influence of a medium
- Future plans: extend the kinetic picture in that direction

Jet quenching

- One of the main results of the HIC program: jets are suppressed with respect to proton-proton collisions
- Quantitatively: look at deviations from binary

The EKT and transport

$$(\partial_t + \mathbf{v}_{\mathbf{p}} \cdot \nabla) f(\mathbf{p}, \mathbf{x}, t) = C^{\text{large}}[\mu_{\perp}] + C^{\text{diff}}[\mu_{\perp}] + C^{\text{coll}}$$

• The stress-energy tensor the hydrodynamic limit and in the kinetic theory is

$$T^{ij} = (p - \zeta \nabla \cdot \mathbf{v})\delta^{ij} - \eta \left(\partial_i v^j + \partial_j v^i - \frac{2}{3}\delta^{ij} \nabla \cdot \mathbf{v}\right) \qquad T^{ij} = \int \frac{d^3p}{(2\pi)^3} \frac{p^i p^j}{p} f(\mathbf{p})$$

 Linearize the EKT around local equilibrium and solve for the non-eq. part under the source given by the perturbed local equilibrium ⇒ numerical inversion of the collision operator

$$f(\mathbf{p}, \mathbf{x}, t) = f_{eq}(p, \mathbf{x}, t) + f^{(1)}(\mathbf{p}, \mathbf{x}, t)$$

LO results (shown later) in Arnold Moore Yaffe (AMY) 2000-2003

The EKT and transport

• Linearized EKT equivalent to Kubo formula (*S* TT part of *T*)

$$\eta = \frac{1}{20} \lim_{\omega \to 0} \frac{1}{\omega} \int d^4 x \, \mathrm{e}^{i\omega t} \left\langle \left[\mathcal{S}^{ij}(t, \mathbf{x}), \, \mathcal{S}^{ij}(0, \mathbf{0}) \right] \right\rangle \theta(t)$$

• Not practical at weak coupling: loop expansion breaks down AMY (2000-2003)

Sources of NLO corrections

• As usual in thermal field theory, the soft scale *gT* introduces NLO *O*(*g*) corrections

 $n_B(p) \sim T/p \sim 1/q$

- The diffusion and the collinear regions receive *O*(*g*) corrections
- There is a new semi-collinear region

Collinear corrections

• The differential eq. for LPM resummation gets correction from NLO $C(q_{\perp})$ and from the thermal asymptotic mass at NLO (Caron-Huot 2009)

$$\mathcal{C}_{\rm LO}(q_\perp) = \frac{g^2 C_A T m_D^2}{q_\perp^2 (q_\perp^2 + m_D^2)}$$

 $C_{\text{NLO}}(q_{\perp})$ complicated but analytical (Euclidean tech) Caron-Huot PRD79 (2009)

Now possible to compute it on the lattice too!
 Panero Rummukainen Schäfer PRL112 (2013)

 $\theta \sim \sqrt{m_D/E}$

Now possible to compute it on the lattice too!
 Panero Rummukainen Schäfer PRL112 (2013)

24

Diffusion corrections

• At NLO one has these diagrams

- For transverse: Euclidean calculation Caron-Huot PRD79 (2009) $\hat{q}_{\text{NLO}} = \hat{q}_{\text{LO}} + \frac{g^4 C_A^2 T^3}{32\pi^2} \frac{m_D}{T} \left(3\pi^2 + 10 - 4\ln 2\right)$
- For longitudinal:

 $\begin{aligned} \hat{q}_{L}(\mu_{\perp})_{\rm LO} = g^{2}C_{A}T \int \frac{d^{2}q_{\perp}}{(2\pi)^{2}} \frac{m_{\infty}^{2}}{q_{\perp}^{2} + m_{\infty}^{2}} \\ \hat{q}_{L}(\mu_{\perp})_{\rm NLO} = g^{2}C_{A}T \int \frac{d^{2}q_{\perp}}{(2\pi)^{2}} \frac{m_{\infty}^{2} + \delta m_{\infty}^{2}}{q_{\perp}^{2} + m_{\infty}^{2} + \delta m_{\infty}^{2}} \approx g^{2}C_{A}T \int \frac{d^{2}q_{\perp}}{(2\pi)^{2}} \left[\frac{m_{\infty}^{2}}{q_{\perp}^{2} + m_{\infty}^{2}} + \left(\frac{q_{\perp}^{2}\delta m_{\infty}^{2}}{(q_{\perp}^{2} + m_{\infty}^{2})^{2}} \right) \right] \end{aligned}$

light-cone sum rule still sees only dispersion relation (with O(g) correction). NLO correction UV-log sensitive

Semi-collinear processes

Seemingly different processes boiling down to wider-angle radiation
 Q+K
 Q+K
 Q+K

400°00A

K soft cut,

• Evaluation: introduce "modified \hat{q} " tracking the changes in the small light-cone component p^- of the gluons. Can be evaluated in EQCD

K soft plasmon,

"standard"
$$\hat{q} = g^2 C_A \int \frac{1}{(2\pi)^2} \int \frac{1}{2\pi} \langle F^{-\perp}(Q)F_{\perp} \rangle_{q^-=0}$$

"modified" $\hat{q}(\delta E) = g^2 C_A \int \frac{d^2 q_{\perp}}{(2\pi)^2} \int \frac{dq^+}{2\pi} \langle F^{-\perp}(Q)F_{\perp}^- \rangle_{q^-=\delta E}$

 Rate \u2295 *"modified \u00f3 "* x DGLAP splitting. IR log divergence makes collision operator finite at NLO

A missing subtlety

- Computing transport coefficients (η) requires knowing how a T^{ij} disturbance induces a second T^{ij} disturbance
- The challenge is again in the soft regions

T^{ij} insertions on the same side, momenta correlated. Diffusion picture applies $C^{Q} = C^{Q} = C^$

• No diffusion picture = no "easy" light-cone sum rules, only bruteforce HTL. Silver lining: they're finite, so just estimate the number and vary it. NLO test ansatz: LO cross x $m_D/T(\sim g)$ x arbitrary constant that we vary $C_{\rm NLO}^{\rm cross} = C_{\rm LO}^{\rm cross} \times \frac{m_D}{T} \times c_{\rm cross}$

Results

Results

- Inversion of the collision operator using variational Ansatz
- At NLO just add *O*(*g*) corrections to the LO collision operator, do not treat them as perturbations in the inversion
- Kinetic theory with massless quarks still conformal to NLO
- Relate parameter $m_D/T \sim g$ to temperature through two-loop g(T) as in Laine Schröder JHEP0503 (2005)
 - Degree of arbitrariness in the choice of quark mass thresholds, test several values of μ/T

JG Moore Teaney, soon

• LO results from AMY (2003)

• All known NLO terms, no cross ansatz yet

Pure QCD running uncertainty band at LO (NNLO) smaller than NLO deviation from LO

n/s convergence

• Convergence realized at *m*_D~0.5*T*

n/s convergence

The ~entirety of the downward shift comes from NLO O(g) corrections to *q̂*

Ratio

Conclusions

- Effective kinetic theory of hard quasi-particles and a soft background
- Can be employed to describe jets, transport coefficients and thermalization
- The interactions with the soft background are encoded in Wilson-line operators, which
 - can be evaluated more easily through the analytic properties of light-like amplitude
 - some of them can now be computed on the lattice

Conclusions

- NLO corrections are large, η down by a factor of ~5 in the phenomenological region
- Convergence below $m_D \sim 0.5T$
- Quark number diffusion coefficient *D* and second-order hydro τ_{Π} will be available in the papers
- Corrections dominated by NLO *Q̂*. Could it be that observables directly sensitive to transverse momentum broadening show bad convergence and those who are not show good convergence? Why?
 #statisticswithsmallnumbers

Backup

• For $t/x_z = 0$: equal time Euclidean correlators.

$$G_{rr}(t=0,\mathbf{x}) = \oint_{p} G_{E}(\omega_{n},p)e^{i\mathbf{p}\cdot\mathbf{x}}$$

 For t/xz =0: equal time Euclidean correlators. G_{rr}(t = 0, x) = fG_E(ω_n, p)e^{ip⋅x}
 Consider the more general case |t/x^z| < 1

$$G_{rr}(t,\mathbf{x}) = \int dp^0 dp^z d^2 p_{\perp} e^{i(p^z x^z + \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp} - p^0 x^0)} \left(\frac{1}{2} + n_{\rm B}(p^0)\right) (G_R(P) - G_A(P))$$

- For $t/x_z = 0$: equal time Euclidean correlators. $G_{rr}(t = 0, \mathbf{x}) = \oint G_E(\omega_n, p) e^{i\mathbf{p}\cdot\mathbf{x}}$
- Consider the more general case |t/x^z| < 1 G_{rr}(t, **x**) = \$\int dp^0 dp^z d^2 p_{\perp} e^{i(p^z x^z + **p_{\perp} \cdot x_{\perp} - p^0 x^0)} (\frac{1}{2} + n_{\rm B}(p^0)) (G_R(P) - G_A(P))\$
 Change variables to \$\tilde{p}^z = p^z - p^0(t/x^z)\$
 G_{rr}(t, x**) = \$\int dp^0 d\tilde{p}^z d^2 p_{\perp} e^{i(\tilde{p}^z x^z + **p_{\perp} \cdot x_{\perp})} (\frac{1}{2} + n_{\rm B}(p^0)) (G_R(p^0, p_{\perp}, \tilde{p}^z + (t/x^z)p^0) - G_A)\$**

• For $t/x_z = 0$: equal time Euclidean correlators.

$$G_{rr}(t=0,\mathbf{x}) = \oint G_E(\omega_n, p) e^{i\mathbf{p}\cdot\mathbf{x}}$$

Consider the more general case |t/x^z| < 1 G_{rr}(t, x) = \$\int dp^0 dp^z d^2 p_{\perp} e^{i(p^z x^z + \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp} - p^0 x^0)} (\frac{1}{2} + n_{\rm B}(p^0)) (G_R(P) - G_A(P))\$
Change variables to \$\tilde{p}^z = p^z - p^0(t/x^z)\$

$$G_{rr}(t,\mathbf{x}) = \int dp^0 d\tilde{p}^z d^2 p_\perp e^{i(\tilde{p}^z x^z + \mathbf{p}_\perp \cdot \mathbf{x}_\perp)} \left(\frac{1}{2} + n_{\rm B}(p^0)\right) \left(G_R(p^0,\mathbf{p}_\perp,\tilde{p}^z + (t/x^z)p^0) - G_A\right)$$

• Retarded functions are analytical in the upper plane in any timelike or lightlike variable => G_R analytical in p^0

• For $t/x_z = 0$: equal time Euclidean correlators.

$$G_{rr}(t=0,\mathbf{x}) = \oint G_E(\omega_n, p) e^{i\mathbf{p}\cdot\mathbf{x}}$$

Consider the more general case |t/x^z| < 1 G_{rr}(t, x) = ∫ dp⁰dp^zd²p_⊥e^{i(p^zx^z+p_⊥·x_⊥-p⁰x⁰)} (¹/₂ + n_B(p⁰)) (G_R(P) - G_A(P))
Change variables to p^z = p^z - p⁰(t/x^z)

$$G_{rr}(t,\mathbf{x}) = \int dp^0 d\tilde{p}^z d^2 p_\perp e^{i(\tilde{p}^z x^z + \mathbf{p}_\perp \cdot \mathbf{x}_\perp)} \left(\frac{1}{2} + n_{\rm B}(p^0)\right) (G_R(p^0,\mathbf{p}_\perp,\tilde{p}^z + (t/x^z)p^0) - G_A)$$

• Retarded functions are analytical in the upper plane in any timelike or lightlike variable => G_R analytical in p^0 $G_{rr}(t, \mathbf{x}) = T \sum \int dp^z d^2 p_{\perp} e^{i(p^z x^z + \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp})} G_E(\omega_n, p_{\perp}, p^z + i\omega_n t/x^z)$

$$\mathcal{G}_{rr}(t,\mathbf{x}) = T \sum_{n} \int dp^{z} d^{2} p_{\perp} e^{i(p^{z}x^{z} + \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp})} \mathcal{G}_{E}(\omega_{n}, p_{\perp}, p^{z} + i\omega_{n}t/x^{z})$$

• For $t/x_z = 0$: equal time Euclidean correlators.

$$G_{rr}(t=0,\mathbf{x}) = \oint G_E(\omega_n, p) e^{i\mathbf{p}\cdot\mathbf{x}}$$

Consider the more general case |t/x^z| < 1 G_{rr}(t, x) = ∫ dp⁰dp^zd²p_⊥e^{i(p^zx^z+p_⊥·x_⊥-p⁰x⁰)} (1/2 + n_B(p⁰)) (G_R(P) - G_A(P))
Change variables to p^z = p^z - p⁰(t/x^z)

$$G_{rr}(t, \mathbf{x}) = \int dp^0 d\tilde{p}^z d^2 p_{\perp} e^{i(\tilde{p}^z x^z + \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp})} \left(\frac{1}{2} + n_{\rm B}(p^0)\right) (G_R(p^0, \mathbf{p}_{\perp}, \tilde{p}^z + (t/x^z)p^0) - G_A)$$

 Retarded functions are analytical in the upper plane in any timelike or lightlike variable => G_R analytical in p⁰ G_{rr}(t, x) = T∑∫ dp^zd²p_⊥e^{i(p^zx^z+p_⊥·x_⊥)}G_E(ω_n, p_⊥, p^z+iω_nt/x^z)
 Soft physics dominated by n=0 (and t-independent) =>EQCD! Caron-Huot PRD79 (2009)

• For $t/x_z = 0$: equal time Euclidean correlators.

$$G_{rr}(t=0,\mathbf{x}) = \oint G_E(\omega_n, p) e^{i\mathbf{p}\cdot\mathbf{x}}$$

Consider the more general case |t/x^z| < 1 G_{rr}(t, x) = ∫ dp⁰dp^zd²p_⊥e^{i(p^zx^z+p_⊥·x_⊥-p⁰x⁰)} (¹/₂ + n_B(p⁰)) (G_R(P) - G_A(P))
Change variables to p^z = p^z - p⁰(t/x^z)

$$G_{rr}(t,\mathbf{x}) = \int dp^0 d\tilde{p}^z d^2 p_{\perp} e^{i(\tilde{p}^z x^z + \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp})} \left(\frac{1}{2} + n_{\rm B}(p^0)\right) (G_R(p^0,\mathbf{p}_{\perp},\tilde{p}^z + (t/x^z)p^0) - G_A)$$

- Retarded functions are analytical in the upper plane in any timelike or lightlike variable => G_R analytical in p^0 $G_{rr}(t, \mathbf{x})_{soft} = T \int d^3p \, e^{i\mathbf{p}\cdot\mathbf{x}} \, G_E(\omega_n = 0, \mathbf{p})$
- Soft physics dominated by *n=0* (and *t*-independent)
 =>EQCD! Caron-Huot PRD79 (2009)

LPM resummation

$$\propto e^{\mathcal{C}(x_{\perp})L}$$

BDMPS-Z, Wiedemann, Casalderrey-Solana Salgado, D'Eramo Liu Rajagopal, Benzke Brambilla Escobedo Vairo
All points at spacelike or lightlike separation, only

- preexisting correlations
- Soft contribution becomes Euclidean! Caron-Huot PRD79 (2008)
 - Can be "easily" computed in perturbation theory
 - Possible lattice measurements Laine EPJC72 (2012) Laine Rothkopf JHEP1307 (2013) Panero Rummukainen Schäfer 1307.5850

• Field-theoretical lightcone definition (justifiable with SCET)

$$\hat{q}_L \equiv \frac{g^2}{d_R} \int_{-\infty}^{+\infty} dx^+ \operatorname{Tr} \left\langle U(-\infty, x^+) F^{+-}(x^+) U(x^+, 0) F^{+-}(0) U(0, -\infty) \right\rangle$$

$$F^{+-} = E^z, \text{ longitudinal Lorentz force correlator}$$

• At leading order

$$\hat{q}_L \propto \int \frac{dq^+ d^2 q_\perp}{(2\pi)^3} (q^+)^2 G^{>}_{++}(q^+, q_\perp, 0)$$
$$= \int \frac{dq^+ d^2 q_\perp}{(2\pi)^3} T q^+ (G^R_{++}(q^+, q_\perp, 0) - G^A)$$

$$\hat{q}_{L}\Big|_{\text{LO}} = g^{2}C_{R} \int \frac{dq^{+}d^{2}q_{\perp}}{(2\pi)^{3}} Tq^{+} (G_{R}^{--}(q^{+},q_{\perp}) - G_{A}^{--}(q^{+},q_{\perp}))$$

$$q^{+}$$

$$-\mu^{+} \qquad \mu^{+}$$

• Use analyticity to deform the contour away from the real axis and keep $1/q^+$ behaviour

$$\hat{q}_L \bigg|_{\rm LO} = g^2 C_R T \int \frac{d^2 q_\perp}{(2\pi)^2} \frac{M_\infty^2}{q_\perp^2 + M_\infty^2}$$