Axions and lattice QCD

Kalman Szabo

Forschungszentrum Jülich University of Wuppertal

A hypotethical elementary particle introduced to solve a

puzzle with the parity transformation

in particle physics and a leading candidate for the

dark matter particle.

Parity transformation (P)

Flip the sign of all spatial coordinates.

$$x
ightarrow -x$$
, $y
ightarrow -y$, $z
ightarrow -z$

Parity transforms an object to its mirror image

 $L \rightarrow R, \quad R \rightarrow L$

Is P a symmetry?

Are the laws of physics the same in the mirror world?

Or can I tell the difference between the original and the mirror image?

Is P a symmetry?

Particle physics 101

Particles: up quark, down quark, electron and neutrino.

Parity and particles

P exchanges left-handed particles with right-handed

Electromagnetic interaction

Strong interaction

Generalized QED: 3x3-matrices and 3-vectors instead of numbers

$$F_{\mu
u}
ightarrow egin{pmatrix} G^{00}_{\mu
u} & G^{01}_{\mu
u} & G^{02}_{\mu
u} \\ G^{10}_{\mu
u} & G^{11}_{\mu
u} & G^{12}_{\mu
u} \\ G^{20}_{\mu
u} & G^{21}_{\mu
u} & G^{22}_{\mu
u} \end{pmatrix} \qquad \qquad \psi
ightarrow egin{pmatrix} \psi^0 \ \psi^1 \ \psi^1 \ \psi^2 \end{pmatrix}$$

 $L_{QCD} = -\frac{1}{4} \operatorname{Tr}(G_{\mu\nu}^2) + (\psi_L^{\dagger}, \sigma_{\mu} D_{\mu} \psi_L) + (\psi_R^{\dagger}, \overline{\sigma}_{\mu} D_{\mu} \psi_R)$

Neutron electric dipole moment

Expt: $\langle n | \vec{d} | n \rangle = -0.2(1.9) \times 10^{-26}$ ecm [Pendlebury '15]

Higgs mechanism

figs/bush.png

figs/bush.png

"Left hand knows what the right hand is doing."

"Left hand knows what the right hand is doing."

 $L_{Higgs} = m \psi_L^{\dagger} \psi_R + m \psi_R^{\dagger} \psi_L$

Generate mass by combining massless L,R particles

P symmetric

Weak interaction

Maximally violates parity, only interacts with L-particles.

Left:= the handedness of particles to which *W* couples

The P puzzle

P is violated by the weak interaction \rightarrow it is not symmetry of Nature.

Why P is not violated by the others?

Try: P-invariance is consequence of remaining symmetries (Lorentz invariance, internal).

The P puzzle in **QED**

$$L_{QED} = -rac{1}{4}F_{\mu
u}^2 + \psi_L^\dagger \sigma_\mu D_\mu \psi_L + \psi_R^\dagger \overline{\sigma}_\mu D_\mu \psi_R$$

What is the most general Lagrangian with Lorentz invariance and gauge symmetry? $L = L_{QED} + \theta \cdot F\widetilde{F}$ with $F\widetilde{F} \equiv F_{\mu\nu}F_{\rho\sigma}\epsilon_{\mu\nu\rho\sigma}$ Violates parity $F\widetilde{F} \rightarrow -F\widetilde{F}$ Total derivative $F\widetilde{F} = \partial_{\mu}K_{\mu}$ with $K_{\mu} = \epsilon_{\mu\nu\rho\sigma}A_{\nu}F_{\rho\sigma}$ then by Gauss-theorem $\int d^4x \ F\widetilde{F} = \oint dn_{\rm u}K_{\rm u} = 0$

P-invariance follows from Lorentz+gauge

The P puzzle in QCD

Most general SU(3) symmetric Lagrangian

$$\begin{split} L = L_{QCD} + \theta \cdot G\widetilde{G} & \text{with} \quad G\widetilde{G} = \frac{1}{8\pi^2} \mathrm{Tr} \left(G_{\mu\nu} G_{\rho\sigma} \epsilon_{\mu\nu\rho\sigma} \right) \\ & \mathbf{Violates \ parity} \\ & G\widetilde{G} \to -G\widetilde{G} \\ & \mathrm{Total \ derivative} \\ G\widetilde{G} = \partial_{\mu} K_{\mu} & \text{with} \quad K_{\mu} = \mathrm{Tr} \epsilon_{\mu\nu\rho\sigma} \left(A_{\nu} G_{\rho\sigma} + \frac{2}{3} A_{\nu} A_{\rho} A_{\sigma} \right) \\ & \text{then by \ Gauss-theorem} \\ & \int d^4 x \ G\widetilde{G} = \oint dn_{\mu} K_{\mu} \neq 0 \\ & K_{\mu} \ \text{can be non-zero at } \infty \end{split}$$

P could be violated by $\theta \cdot G\widetilde{G}$. Why not?

nEDM experiments $\rightarrow \theta \lesssim 0.000000001$

P-violation in Higgs

$$L_{Higgs} = m \left(\psi_L^\dagger \psi_R + \psi_R^\dagger \psi_L
ight) ~~ ext{with real} ~m$$

Most general Lagrangian has complex mass :

$$L = m \psi_L^{\dagger} \psi_R + m^* \psi_R^{\dagger} \psi_L$$

It violates parity, but can be transformed away by an axial transformation :

$$\psi_L
ightarrow \psi_L, \quad \psi_R
ightarrow e^{-i rg m} \psi_R$$

but P-violation does not go away:

$$L o L + rg m \cdot F\widetilde{F} + rg m \cdot G\widetilde{G}$$

Higgs P violation can be transformed to strong GG

The P puzzle

θ dependence of QCD

Has a minimum at $\theta = 0!$

Lattice **QCD** computation

$$-\frac{1}{V}\log Z(\theta)/Z(0) = \frac{1}{2}\theta^2\chi + \dots$$

100.000 years on a PC, 1 year on a supercomputer.

$$-\frac{1}{V}\log Z(\theta)/Z(0) = \frac{1}{2}\theta^2\chi + \dots$$

100.000 years on a PC, 1 year on a supercomputer.

$$-\frac{1}{V}\log Z(\theta)/Z(0) = \frac{1}{2}\theta^2\chi + \dots$$

100.000 years on a PC, 1 year on a supercomputer.

$$-\frac{1}{V}\log Z(\theta)/Z(0) = \frac{1}{2}\theta^2\chi + \dots$$

100.000 years on a PC, 1 year on a supercomputer.

A solution by Peccei-Quinn

Make a dynamical field from the parameter!

figs/thetapot/plot.gif

$$L + \theta \cdot G\widetilde{G} + \frac{1}{2}f^2 \cdot (\partial_{\mu}\theta)^2 + V(\theta, \partial_{\mu}\theta)$$

with $V(\theta, \partial_{\mu}\theta)$ such, that minimum stays at $\theta = 0$.

Dynamical field \rightarrow new particle

The axion

"Cleaning up the problem with the axial transformation" [Weinberg,Wilczek]

$$L_{a} = \theta \cdot G\widetilde{G} + \frac{1}{2}f_{a}^{2} \cdot (\partial_{\mu}\theta)^{2} + V(\theta, \partial_{\mu}\theta)$$

The axion window

Searching for axions is hard, since mass is unknown.

Exclusions on m_a from

Early laboratory searches

Astrophysics (supernovae, red giants)

Axion is dark matter

Axion production in the early Universe

Calculate the number of axions produced!

Rolling down the potential $(\rightarrow \chi(T))$ + damped by expansion $(\rightarrow \epsilon(T), p(T))$ equation of state).

Need lattice QCD!

Calculation of the axion mass based on hightemperature lattice quantum chromodynamics

S. Borsanyi¹, Z. Fodor^{1,2,3}, J. Guenther¹, K.-H. Kampert¹, S. D. Katz^{3,4}, T. Kawanai², T. G. Kovacs⁵, S. W. Mages², A. Pasztor¹, F. Pittler^{3,4}, J. Redondo^{6,7}, A. Ringwald⁸ & K. K. Szabo^{1,2}

doi.org/10.1038/nature20115

Equation of state from lattice QCD

Equation of state

Determination of axion potential Challenge

Determine the blue/red ratio by random pick!

 \longrightarrow getting very difficult with T \longrightarrow

Solution

Separate colors and determine the rate of change with T!

Axion potential $\chi(T)$

Comparison to others

Results

All dark matter is axion: $\Omega_{DM} \equiv \Omega_a(m_a, \theta_0) \rightarrow m_a(\theta_0)$

