Axions and lattice GCD

Kalman Szabo
Forschungszentrum Jülich
University of Wuppertal

Axion

A hypotethical elementary particle introduced to solve a puzzle with the parity transformation
in particle physics and a leading candidate for the
dark matter particle .

Parity transformation (P)

Flip the sign of all spatial coordinates.

$$
x \rightarrow-x, \quad y \rightarrow-y, \quad z \rightarrow-z
$$

Parity transforms an object to its mirror image

$$
L \rightarrow R, \quad R \rightarrow L
$$

Is P a symmetry?

Are the laws of physics the same in the mirror world?

Or can I tell the difference between the original and the mirror image?

Is P a symmetry?

Particle physics 101

Particles: up quark, down quark, electron and neutrino.

Interactions: strong, electromagnetic, weak and Higgs.

Parity and particles

Particles have spin and are massless \rightarrow

P exchanges left-handed particles with right-handed

Electromagnetic interaction

$$
\begin{gathered}
\nabla E=4 \pi \rho, \quad \nabla B=0, \quad \nabla \times E+\partial_{t} B=0, \quad \nabla \times B-\partial_{t} E=4 \pi j \\
P: E \rightarrow-E, B \rightarrow B, \rho \rightarrow \rho, j \rightarrow-j, \nabla \rightarrow-\nabla
\end{gathered}
$$

Classical electrodynamics

P symmetric

$$
L_{G E D}=-\frac{1}{4} F_{\mu \nu}^{2}+\psi_{L}^{\dagger} \sigma_{\mu} D_{\mu} \psi_{L}+\psi_{R}^{\dagger} \bar{\sigma}_{\mu} D_{\mu} \psi_{R}
$$

Strong interaction

Generalized QED: 3x3-matrices and 3-vectors instead of numbers

$$
\begin{gathered}
F_{\mu \nu} \rightarrow\left(\begin{array}{ccc}
G_{\mu \nu}^{00} & G_{\mu \nu}^{01} & G_{\mu \nu}^{02} \\
G_{\mu \nu}^{10} & G_{\mu \nu}^{11} & G_{\mu \nu}^{12} \\
G_{\mu \nu}^{20} & G_{\mu \nu}^{21} & G_{\mu \nu}^{22}
\end{array}\right) \quad \psi \rightarrow\left(\begin{array}{c}
\psi^{0} \\
\psi^{1} \\
\psi^{2}
\end{array}\right) \\
L_{B C D}=-\frac{1}{4} \operatorname{Tr}\left(G_{\mu \nu}^{2}\right)+\left(\psi_{L}^{\dagger}, \sigma_{\mu} D_{\mu} \psi_{L}\right)+\left(\psi_{R}^{\dagger}, \bar{\sigma}_{\mu} D_{\mu} \psi_{R}\right)
\end{gathered}
$$

P symmetric

Neutron electric dipole moment

EDM is P-odd $P \cdot \vec{d} \cdot P=-\vec{d}$

Expt: $\langle n| \vec{d}|n\rangle=-0.2(1.9) \times 10^{-26}$ ecm [Pendlebury '15]

Higgs interaction

Higgs mechanism

Higgs interaction

figs/bush.png

Higgs interaction

figs/bush.png
"Left hand knows what the right hand is doing."

Higgs interaction

"Left hand knows what the right hand is doing."

Generate mass by combining massless L,R particles

> P symmetric

Weak interaction

Maximally violates parity, only interacts with L-particles.

P violating

Left:= the handedness of particles to which W couples

The P puzzle

electromagnetic	V
strong	N
Higgs	X
weak	\mathbf{X}

P is violated by the weak interaction \rightarrow it is not symmetry of Nature.

Why P is not violated by the others?

Try: P-invariance is consequence of remaining symmetries (Lorentz invariance, internal).

The P puzzle in GED

$$
L_{Q E D}=-\frac{1}{4} F_{\mu \nu}^{2}+\psi_{L}^{\dagger} \sigma_{\mu} D_{\mu} \psi_{L}+\psi_{R}^{\dagger} \bar{\sigma}_{\mu} D_{\mu} \psi_{R}
$$

What is the most general Lagrangian with Lorentz invariance and gauge symmetry?

$$
L=L_{O E D}+\theta \cdot F \widetilde{F} \quad \text { with } \quad F \widetilde{F} \equiv F_{\mu \nu} F_{\rho \sigma} \epsilon_{\mu v \rho \sigma}
$$

Violates parity

$$
F \widetilde{F} \rightarrow-F \widetilde{F}
$$

Total derivative

$$
F \widetilde{F}=\partial_{\mu} K_{\mu} \quad \text { with } \quad K_{\mu}=\epsilon_{\mu \nu \rho \sigma} A_{v} F_{\rho \sigma}
$$

then by Gauss-theorem

$$
\int d^{4} x F \widetilde{F}=\oint d n_{\mu} K_{\mu}=0
$$

P-invariance follows from Lorentz+gauge

The P puzzle in $\mathbf{G C D}$

Most general SU(3) symmetric Lagrangian

$$
L=L_{B C D}+\theta \cdot G \widetilde{G} \quad \text { with } \quad G \widetilde{G}=\frac{1}{8 \pi^{2}} \operatorname{Tr}\left(G_{\mu \nu} G_{\rho \sigma} \epsilon_{\mu v \rho \sigma}\right)
$$

Violates parity

$$
G \widetilde{G} \rightarrow-G \widetilde{G}
$$

Total derivative
$G \widetilde{G}=\partial_{\mu} K_{\mu} \quad$ with $\quad K_{\mu}=\operatorname{Tr} \epsilon_{\mu \nu \rho \sigma}\left(A_{\nu} G_{\rho \sigma}+\frac{2}{3} A_{\nu} A_{\rho} A_{\sigma}\right)$ then by Gauss-theorem

$$
\int d^{4} x G \widetilde{G}=\oint d n_{\mu} K_{\mu} \neq 0
$$

P could be violated by $\theta \cdot G \widetilde{G}$. Why not? nEDM experiments $\rightarrow \theta \lesssim 0.0000000001$

P-violation in Higgs

$$
L_{\text {Higgs }}=m\left(\psi_{L}^{\dagger} \psi_{R}+\psi_{R}^{\dagger} \psi_{L}\right) \quad \text { with real } m
$$

Most general Lagrangian has complex mass :

$$
L=m \psi_{L}^{\dagger} \psi_{R}+m^{*} \psi_{R}^{\dagger} \psi_{L}
$$

It violates parity, but can be transformed away by an axial transformation :

$$
\psi_{L} \rightarrow \psi_{L}, \quad \psi_{R} \rightarrow e^{-i \operatorname{argm}} \psi_{R}
$$

but P -violation does not go away:

$$
L \rightarrow L+\arg m \cdot F \widetilde{F}+\arg m \cdot G \widetilde{G}
$$

Higgs P violation can be transformed to strong $G \widetilde{G}$

The P puzzle

θ dependence of $\mathbf{G C D}$

Calculate the Feynman path integral!

$$
Z(\theta)=\int[d G]\left[d \psi^{\dagger}\right][d \psi] \exp \left(i \int d^{4} x(L+\theta G \widetilde{G})\right)
$$

Has a minimum at $\theta=0$!

Lattice GCD computation

Discretize!

lattice spacing $a \lesssim \frac{1}{10}$ proton size

10^{9} dimensional integrals using supercomputers

θ dependence from lattice $\mathbf{G C D}$

$$
-\frac{1}{V} \log Z(\theta) / Z(0)=\frac{1}{2} \theta^{2} \chi+\ldots
$$

$a=0.134 \mathrm{fm}$
2.000 PCyears

100.000 years on a PC, 1 year on a supercomputer.

θ dependence from lattice $\mathbf{G C D}$

$$
-\frac{1}{V} \log Z(\theta) / Z(0)=\frac{1}{2} \theta^{2} \chi+\ldots
$$

$a=0.095 \mathrm{fm}$
12.000 PCyears
100.000 years on a PC, 1 year on a supercomputer.

θ dependence from lattice $\mathbf{G C D}$

$$
-\frac{1}{V} \log Z(\theta) / Z(0)=\frac{1}{2} \theta^{2} \chi+\ldots
$$

$a=0.064 \mathrm{fm}$
86.000 PCyears

100.000 years on a PC, 1 year on a supercomputer.

θ dependence from lattice $\mathbf{G C D}$

$$
-\frac{1}{V} \log Z(\theta) / Z(0)=\frac{1}{2} \theta^{2} \chi+\ldots
$$

100.000 years on a PC, 1 year on a supercomputer.

A solution by Peccei-Guinn

Make a dynamical field from the parameter!
figs/thetapot/plot.gif

$$
L+\theta \cdot G \widetilde{G}+\frac{1}{2} f^{2} \cdot\left(\partial_{\mu} \theta\right)^{2}+V\left(\theta, \partial_{\mu} \theta\right)
$$

with $V\left(\theta, \partial_{\mu} \theta\right)$ such, that minimum stays at $\theta=0$.

$$
\text { Dynamical field } \rightarrow \text { new particle }
$$

The axion

"Cleaning up the problem with the axial transformation" [Weinberg,Wilczek]

$$
L_{a}=\theta \cdot G \widetilde{G}+\frac{1}{2} f_{a}^{2} \cdot\left(\partial_{\mu} \theta\right)^{2}+V\left(\theta, \partial_{\mu} \theta\right)
$$

Mass \leftrightarrow Scale $m_{a}^{2}=\chi / f_{a}^{2}$ with $\chi=76(2)(1) \mathrm{MeV}$

Larrailchún
 GRASALIMPOSBEB

Interactions are model dependent

Smaller mass more elusive.

The axion window

Searching for axions is hard, since mass is unknown.

Exclusions on m_{a} from

Early laboratory searches

Astrophysics (supernovae, red giants)

Axion is dark matter

Axion production in the early Universe

Potential becomes flat at QCD transition ($T_{c} \approx 150 \mathrm{MeV}$)

Calculate the number of axions produced!

Rolling down the potential ($\rightarrow \chi(T)$) + damped by expansion $(\rightarrow \epsilon(T), p(T)$ equation of state).

Need lattice QCD!

Calculation of the axion mass based on hightemperature lattice quantum chromodynamics

S. Borsanyi ${ }^{1}$, Z. Fodor ${ }^{1,2,3}$, J. Guenther ${ }^{1}$, K.-H. Kampert ${ }^{1}$, S. D. Katz ${ }^{3,4}$, T. Kawanai ${ }^{2}$, T. G. Kovacs ${ }^{5}$, S. W. Mages ${ }^{2}$, A. Pasztor ${ }^{1}$, F. Pittler ${ }^{3,4}$, J. Redondo ${ }^{6,7}$, A. Ringwald ${ }^{8}$ \& K. K. Szabo ${ }^{1,2}$

doi.org/10.1038/nature20115

Equation of state from lattice GCD

1981: pure $\mathrm{SU}(2), N_{t}=2$
2016: $\mathrm{SU}(3)+\mathrm{u}, \mathrm{d}, \mathrm{s}, \mathrm{c}, \mathrm{b}$; cont. extrap. from $N_{t}=6 \ldots 16$ First time without "left for future work"!

Equation of state

Full result= lattice QCD + weak [Laine,Meyer,Schroeder] + photon + neutrinos + leptons

Determination of axion potential

Challenge

Determine the blue/red ratio by random pick!

Solution

Separate colors and determine the rate of change with T !

Axion potential $\chi(T)$

Two challenges to solve:

1. signal is small 2. lattice artefacts are large

Comparison to others

Results

All dark matter is axion: $\Omega_{D M} \equiv \Omega_{a}\left(m_{a}, \theta_{0}\right) \rightarrow m_{a}\left(\theta_{0}\right)$

post-inflation: average all possible θ_{0} values \rightarrow

$$
\left\langle m_{a}\left(\theta_{0}\right)\right\rangle=28(1) \mu \mathrm{eV}
$$

(If not all DM is axion, then this is a lower bound.) pre-inflation: single θ_{0} in Universe, m_{a} can be anything

