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Global heat content change
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Over the last 50 years:

Ocean heat content has changed much more
than land and atmosphere heat content.




Temperature change
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Oceans have LARGE EFFECTIVE HEAT CAPACITY compared to land.

mcAT = (@)
dT  Q Q F F HEAT FLUX
dt mc pVe phe C EFFECTIVE HEAT CAPACITY
@ heat exchanged ™M, mass p density F = Q /A heat flux
() heating rate C. heat capacity V = Ah volume C =phc effective heat capacity

qand=(phc)[ . ~ 3000kem31m1000 kiK' ~ 3 -10° J 2K’
an

C___=(phc) ~ 1000 kg mi? [20-200] m 4000 J kg' K ' ~[8 - 107 — 8 - 10%] J m*K’
ocean

For the same heat flux, the rate of warming for land is 100 times larger than for the ocean.
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Thermal stratification
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Response to periodic forcing

evolution of temperature anomaly T

dT heating  cooling
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Response to periodic forcing

evolution of temperature anomaly T

dT heating  cooling
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A cos(wt) + wC sin(wt)
T =S
\2 _|_w202
A COS(Wt) larger amplitude,
wC < A T = 50 22 in phase with heating
wC SiH(Wt) smaller amplitude,

wC > A T =5 202 out of phase with heating

Heat storage in the ocean mitigates (high frequency) climate variability (and climate change)




Hemisphere surface
covered by ocean:

60% Northern

80% Southern

High latitude regions:
land (ice) in the Southern hemisphere

ocean in the Northern hemisphere
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Monsoons

INDIAN OCEAN
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The role of intense winds

Effective ocean heat capacity depends on mixed layer depth, /i, whose value is a nonlinear
function of wind speed.
(b) BTM measurements
0 :
Winds input kinetic energy into the
ocean, which can erode stratification
-40} and induce mixing (shear instability).
é -80] Wind induced vertical mixing cools
£ the surface and warms part of the
% thermocline.
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Cold wake

Cold wakes left by intense winds have SST anomalies up to -10°C. [Chiang et al. JPO 2011]

Sea Surface Temperature

Hurricane Edouard, 1996 (30 august and 3 september)




Wake recovery
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Within a month the surface
cold anomaly has
disappeared.

What happens to the
subsurface warm anomaly?

[Wei and Pasquero, J. Climate 2013]
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Today, TCs have a global long term warming effect on the ocean of 0.32 +£0.15 PW

Global wind energy dissipation rate over the oceans is about 1TW.

Does subsurface heat affect the atmosphere?
Yes, even suddenly, such as in tropical cyclones




Diverging Airflow
in Upper Atmosphere

Near Surface
Convergence
of Moist
Warm Air

3. Air accumulating in the tropopause generates
divergence and reduction of total mass in the air
column. Low pressure at the surface.

4. Low pressure center drives convergence at the
surface. Earth rotation deviates the inward flow,
causing an intense spiraling motion.

5. Strong winds at the surface drive large enthalpy
fluxes at the air-sea interface, which intensify

convection.
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1. Warm and moist air at the surface is
uplifted by convection.

2. Expansion cooling induces
condensation and release of latent heat,
which increases the buoyancy of the air
parcel, up to the tropopause.
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Cr air/sea heat exchange coefficient

Cp air/sea momentum exchange coefficient

Ts Sea Surface Temperature

To tropopause temperature

h moist static energy of air in the boundary layer
hi moist static energy of saturated air at T,

Fi, = CyplV|(hs — h")

air-sea flux of enthalpy

D = CD,O|V|3

energy extracted through friction and
recycled to heat the boundary layer

Q. [Bister et al. 2011]
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Weak sensitivity of V to SST (1 m/s per 1°C)




Rapid intensification

Hurricane Matthew (october 2016):

from 130 km/hr (cat.1) to 260 Km/hr (cat.5) in 24 hours

more than
1600 casualties,
mainly in Haiti




Rapid intensification

Hurricane Matthew (october 2016):

from 130 km/hr (cat.1) to 260 Km/hr (cat.5) in 24 hours

SEA SURFACE HEIGHT

SEA SURFACE TEMPERATURE ANOMALY (°C) (proxy for upper ocean heat content
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Negative feedback

climatological SST anomaly
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anomalously large SST anomaly




Climatological correlation

North Western Tropical Pacific typhoons

Annual mean intensification rate has a significant correlation (R=0.6) with subsurface temperature.
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Conclusions

Large effective heat capacity of ocean is associated to depth of
the mixed layer.

Mixed layer depth (and ocean heat content) depend nonnlinearly
on wind speed.

Intense winds have a long term warming effect on the ocean.
Heating is two orders of magnitude larger than the input of
kinetic energy.

Thermal energy stored in the ocean can suddenly be released in
the atmosphere.

Example: strong sensitivity of hurricane intensity on subsurface
ocean temperatures.




