Factorization and High-Precision Jet Physics

André H. Hoang

University of Vienna

Der Wissenschaftsfonds.

Jets

Jet: cluster of energetic hadrons leaving tracks and energy deposits in the detectors.

Most common object arising in high energy collisions and heavy particle decays

Characteristics of jets:

- Represent very rich dynamical objects
- Can behave like unambiguous "particles" or quantum objects, that are defined by the measurement prescription, depending on what question we ask.
- Contain perturbative physics are different energy scales as well as nonperturbative effects. Portion depends on which observables we consider.
- Aims: Precise (conceptual and) quantitative understanding of jet properties in the framework of QCD.
- Disentangle details of physics of the underlying hard reactions (QCD, Higgs, decays of new physics particles, ...)
- Test our understanding of QCD and our tools to describe it quantitatively

Monte-Carlo event generators:

- Separation/factorization of dynamical effects from different energy scales.
- Hard interactions
- Parton evolution to higher multiplicities
- Hadronization
- Secondary interactions

The workhorse for all experimental analyses.

- Full description of all aspects of collider physics observables down to all properties of the individual final state hadrons
- Extremely versatile

Main Theoretical Tool

Brickwall problems that cannot be addressed in that way:

- Parton showers do not have more than LL precision
- Strong model component (hadronization, UE model,...)
- Limited theoretical precision for many subtle aspects
- What is the theory precision of tuning?
- Monte-Carlo: more model OR more first principles QCD ?

What is the meaning of the QCD parameters in the Monte-Carlo?

 $\alpha_s, m_{top}, \ldots$

We also have to go different ways, and describe jets with first principles QCD.

Theory for Jets from Mode Separation

15 years ago: EFT approach invented to describe jets in B decays, for which EFTs are the only known theory approach

Until 5 years ago: EFT approach only reproduced many collider physics results already known before from the classic pQCD approach to jets.

Today: EFT approach addresses problems not addressed before …

Outline

- Soft-Collinear Effective Theory (SCET)
- Anatomy of the SCET method
- Strong coupling from event shapes
- Top quark Monte-Carlo mass parameter

Basic idea of mode separation

First developed for single jet problems in B-physics.

jet invariant mass

Bauer, Fleming, Pirjol, Stewart 2000-2001

We talk about a jet if: $m_X^2 \lesssim Q \Lambda_{
m QCD}$

Light-cone coordinates:

 $n^{\mu} = (1, 0, 0, -1)$ $\bar{n}^{\mu} = (1, 0, 0, 1)$

$$p^{\mu} = p^{+} \frac{\bar{n}^{\mu}}{2} + p^{-} \frac{n^{\mu}}{2} + p_{\perp} \qquad p^{+} = n.p = p_{0} + p_{3}$$
$$= (p^{+}, p^{-}, p_{\perp}) \qquad p^{-} = \bar{n}.p = p_{0} - p_{3}$$

Basic idea of mode separation

First developed for single jet problems in B-physics.

Bauer, Fleming, Pirjol, Stewart 2000-2001

Soft-Collinear Effective Theory:

- Doing jet physics using the concept of mode and scale separation at the Lagrangian and operator level
 - Feynman rules
 - systematic power counting
 - Lagrangian level access to jet physics problems.

- Approach to access power corrections and subleading twist terms, double counting issues at operator level.
- Leads to results theoretically equivalent to classic pQCD wherever dedicated results have been derived in both approaches.

Differences in the way how results are implemented in applications (subleading).

Some problems appear harder / easier in either approach.

Effective Lagrangian

Effective Lagrangian

Effective Lagrangian: (leading in λ)

similar to QCD Lagrangian

$$\mathcal{L}_{\text{SCET}} = \sum_{\text{jets } i} \mathcal{L}_{c,n_i}(\xi_{n_i}, A^{\mu}_{n_i}) + \mathcal{L}_s(q_{us}, A^{\mu}_{us})$$

1

Effective Lagrangian

- Jet fields are gauge invariant under collinear gauge transformations. Complete gauge invariance in connection with all soft processes.
 - Explains the existence of jets + soft radiation between jets!

Factorization:
$$\mathcal{L}_{c,n} = \bar{\xi}_n in.D_{us} \frac{\bar{n}}{2} \xi_n$$
ultrasoft Wilson lineSoft field redefinition:
soft-collinear decoupling $\xi_n \to Y_n \, \xi_n, \quad A_n^\mu \to Y_n A_n^\mu Y_n^\dagger$
 $Y_n(x) = \bar{P} \exp\left(-ig \int_0^\infty \mathrm{d} s \, n.A_{us}(ns+x)\right)\right)$ $\mathcal{L}_{c,n} = \bar{\xi}_n in.\partial_{us} \frac{\bar{n}}{2} \xi_n$

$$|X\rangle \longrightarrow |X_n X_{\bar{n}} X_{\mathrm{us}}\rangle = |X_n\rangle \otimes |X_{\bar{n}}\rangle \otimes |X_{\mathrm{us}}\rangle$$

$$\mathcal{J}^{\mu}(\omega,\bar{\omega}) \to \bar{\chi}_{n,\omega}(0) Y_n^{\dagger} Y_{\bar{n}} \Gamma^{\mu} \chi_{\bar{n},\bar{\omega}}(0)$$

soft-collinear decoupling at the operator level

Singular Cross section (SCET)

Korchemsky, Sterman; Bauer etal. Fleming, Mantry, Stewart, AHH Schwartz

$$\left(\frac{d\sigma}{d\tau}\right)_{\text{part}}^{\text{sing}} \sim \sigma_0 H(Q,\mu_Q) U_H(Q,\mu_Q,\mu_s) \int d\ell d\ell' U_J(Q\tau-\ell-\ell',\mu_Q,\mu_s) J_T(Q\ell',\mu_j) S_T(\ell-\Delta,\mu_s)$$

Matrix element terms (fixed-order)

Summation of large logarithms (RG-summation, SCET 1)

$$\begin{pmatrix} \frac{d\sigma}{d\tau} \end{pmatrix}_{\text{part}}^{\text{sing}} \sim \sigma_0 H(Q, \mu_Q) U_H(Q, \mu_Q, \mu_s) \int d\ell d\ell' U_J(Q\tau - \ell - \ell', \mu_Q, \mu_s) J_T(Q\ell', \mu_j) S_T(\ell - \Delta, \mu_s)$$

$$2\text{-jet production current}$$

$$\mu \frac{d}{d\mu} H_Q(Q, \mu) = \gamma_{H_Q}(Q, \mu) H_Q(Q, \mu)$$

$$\gamma_{H_Q}(Q, \mu) = \Gamma_{H_Q} [\alpha_s] \ln \left(\frac{\mu^2}{Q^2}\right) + \gamma_{H_Q} [\alpha_s]$$

$$NNNLL \text{ summations possible!}$$

$$Jet \text{ function evolution}$$

$$\mu \frac{d}{d\mu} J(y, \mu) = \gamma_J(y, \mu) J(y, \mu) = \left[2\Gamma^{\text{cusp}}(\alpha_s) \ln(iy\mu^2 e^{\gamma_E}) + \gamma_J(\alpha_s) \right] J(y, \mu)$$

Summation of large logarithms (RG-summation, SCET 1)

0.1

niversität wien

0.2

0.3

 $\mathbf{\tau}$

0.4

Particle Physics Colloquium, University Torino, Oct 7 2016

Combination for hadron level prediction

Further Developments (small selection)

Different types of SCET (examples)

Actually all different EFTs, but they are all part of to the SCET method.

For example: DIS for $x \to 1$

Application of SCET 1

Can be applied to global jet shape variables, not sensitive to transverse momenta: e.g. e⁺e⁻ eventshapes

Thrust

$$\tau = 1 - \max_{\hat{n}} \frac{\sum |\vec{p}_i \cdot \hat{n}|}{\sum |\vec{p}_i|}$$

C-parameter

$$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p}_i| |\vec{p}_j| \sin^2 \theta_{ij}}{(\sum_i |\vec{p}_i|)^2}$$

Analyses at NNNLL + O(α_s^2) fixed order using tail data (all available Q>25 GeV)

Becher, Schwartz (partonic resummation) Full analysis incl. nonpert. effects: Abbate, Fickinger, AHH, Mateu, Stewart (thrust) AHH, Kolodrubetz, Mateu, Stewart (C-para)

Strong Coupling from e⁺e⁻ Event Shapes

- -> Very good agreement at N³LL + O(α_s^3) with renormalon subtraction.
 - Error dominated by theory uncertainty (particularly pQCD)

niversität

Strong Coupling from e⁺e⁻ Event Shapes

C-parameter versus Thrust Tail Global Fit

Thrust and C-parameter results are fully compatible concerning fit of nonperturbative matrix element Ω_1 .

Strong Coupling 2015 World Average

2016 Worldaverage:

$$\alpha_s(M_Z) = 0.1181 \pm 0.0013$$

A small history on top mass reconstruction

 Many individual measurements with uncertainties below 1 GeV.

> $m_t^{\text{MC}} = 174.34 \pm 0.64$ (Tevatron final, 2014) $m_t^{\text{MC}} = 172.44 \pm 0.49$ (CMS Run-1 final, 2015) $m_t^{\text{MC}} = 172.84 \pm 0.70$ (ATLAS Run-1 final, 2016)

Main Top Mass Measurements Methods

LHC+Tevatron

Monte-Carlo Event Generators

- 2) Parton shower (LL)
- 3) Hadronization model
- Full simulation of all processes (all experimental aspects accessible)
- QCD-inspired: partly first principles QCD ⇔ partly model
- Description power of data better than intrinsic theory accuracy.
- Top quark in parton shower: treated like a real particle $(m_t^{MC} \approx m_t^{pole} + ?)$.
- Top quark in matrix elements: $m_t^{MC} = m_t^{pole}$

But pole mass ambiguous by $O(\Lambda_{QCD})$ due to confinement. Short mass definition more suitable.

Uncertainty (a): But how precise is modelling? \rightarrow Part of exp. Analyses Unvertainty (b): What is the meaning of MC QCD parameters? \rightarrow This work

MC Top Quark Mass (for reconstruction)

AHH, Stewart 2008 AHH, 2014

$$m_t^{\mathrm{MC}} = m_t^{\mathrm{MSR}}(R = 1 \text{ GeV}) + \Delta_{t,\mathrm{MC}}(R = 1 \text{ GeV})$$

 $\Delta_{t,\mathrm{MC}}(1 \ \mathrm{GeV}) \sim \mathcal{O}(1 \ \mathrm{GeV})$

- small size of $\Delta_{t,MC}$
- Renormalon-free
- little parametric dependence on other parameters

MSR Mass Definition

<u>MS Scheme:</u> $(\mu > \overline{m}(\overline{m}))$

 $\overline{m}(\overline{m}) - m^{\text{pole}} = -\overline{m}(\overline{m}) \left[0.42441 \,\alpha_s(\overline{m}) + 0.8345 \,\alpha_s^2(\overline{m}) + 2.368 \,\alpha_s^3(\overline{m}) + \ldots \right]$

 $\underline{\mathsf{MSR Scheme:}} \quad (R < \overline{m}(\overline{m}))$

 $m_{\rm MSR}(R) - m^{\rm pole} = -R \left[0.42441 \,\alpha_s(R) + 0.8345 \,\alpha_s^2(R) + 2.368 \,\alpha_s^3(R) + \ldots \right]$

 $m_{\rm MSR}(m_{\rm MSR}) = \overline{m}(\overline{m})$

 $\implies m_{MSR}(R)$ Short-distance mass that smoothly interpolates all R scales = "pole mass subtraction for scales larger than R"

Particle Physics Colloquium, University Torino,Oct 7 2016

Method:

- Strongly mass-sensitive hadron level observable (as closely as possible related to reconstructed invariant mass distribution !)
- ✓ 2) Accurate <u>hadron level</u> QCD predictions at ≥ NLL/NLO with full control over the quark mass scheme dependence.
- \checkmark 3) QCD masses as function of m_t^{MC} from fits of observable.
 - 4) Cross check observable independence / universality

$$m_t^{\text{MC}} = m_t^{\text{MSR}}(R = 1 \text{ GeV}) + \Delta_{t,\text{MC}}(R = 1 \text{ GeV})$$

$$\Delta_{t,\text{MC}}(1 \text{ GeV}) = \overline{\Delta} + \delta \Delta_{\text{MC}} + \delta \Delta_{\text{pQCD}} + \delta \Delta_{\text{param}}$$
Experimental systematics
$$Monte \text{ Carlo dependence:}$$

$$\begin{array}{c} \text{OCD errors:} \\ \text{OCD errors:} \\ \text{order of the strong coupling } \alpha_s \\ \text{o$$

Thrust Distribution

Observable: 2-jettiness in e+e- for $Q = 2p_T \gg m_t$ (boosted tops)

$$\tau = 1 - \max_{\vec{n}} \frac{\sum_{i} |\vec{n} \cdot \vec{p}_{i}|}{Q}$$
$$\tau_{2} \rightarrow \text{peak} \approx \frac{M_{1}^{2} + M_{2}^{2}}{Q^{2}}$$

Invariant mass distribution in the resonance region of wide hemisphere jets !

$$rac{\mathrm{d}\sigma}{\mathrm{d} au} = \mathcal{Q}^2 \sigma_0 \mathcal{H}_0(\mathcal{Q},\mu) \int \mathcal{d}\ell \; \mathcal{J}_0(\mathcal{Q}\ell,\mu) \, \mathcal{S}_0\left(\mathcal{Q} au-\ell,\mu
ight)$$

soft particles

n-collinear

Excellent mass sensitivity:

niversitat

$$au_2^{
m peak} = 1 - \sqrt{1 - \frac{4m_t^2}{Q^2}}$$

n-collinear

\boldsymbol{p}_{T} Dependence of CMS Top Mass

- Top mass from reconstruction of boosted tops consistent with low p_T results.
- More precise studies possible with more statistics from Run-2.
- Meaning of m_t^{MC} for boosted tops and slow top quarks consistent.

<m^{hyb}> [GeV]

m^{hyb}t.cal

Further Developments (small selection)

Extension of massless SCET-1 to massive guarks: Pietrulewicz, AHH, Jemos, Mateu Variable Flavor Number scheme for final state jets (can be combined with PDF) For arbitrary masses and full log resummation in any kinematic regime.

2-Jettiness for Top Production (QCD)

Fit Procedure Details

Butenschoen, Dehnadi, AHH, Mateu, Preisser, Stewart; PRL to appear

•
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = f(m_t^{\mathrm{MSR}}, \alpha_s(m_Z), \Omega_1, \Omega_2, \dots, \mu_H, \mu_J, \mu_S, \mu_M, R, \Gamma_t)$$
 (NNLL + NLO)

any scheme non-perturbative renorm. scales finite lifetime

- Generating PYTHIA Samples: (PYTHIA 8.205)
 at different energies: Q = 600, 700, 800, ..., 1400 GeV
 - masses: $m_t^{\text{MC}} = 170, 171, 172, 173, 174, 175 \text{ GeV}$
 - width: $\Gamma_t = 1.4$ GeV
 - Statistics: 10⁷ events for each set of parameters
- Feed MC data into Fitting Procedure: all ingredients are there Fit parameters: m^{MSR}_t, α_s(m_Z), Ω₁, Ω₂,...
 - standard fit based on χ^2 minimization
 - analysis with 500 sets of profiles (au_2 dependent renorm. scales) for the each MC sample
 - different Q-sets: 7 sets with energies between 600 1400 GeV
 different n-sets: 3 choices for fitranges (xx/yy)% of maximum peak height
 21 fit setups

Tune 7 (Monash)

Peak Fits Parameter Sensitivity

Default renormalization scales; Γ_t =1.4 GeV, tune 7, $\Omega_{1,smear}$ =2.5 GeV, m_t^{Pythia} =171 GeV, Q={700, 1000, 1400} GeV, peak fit (60/80)%

 $\longrightarrow \chi^2_{\min} \sim O(100)$

- Very strong sensitivity to m_t
- Low sensitivity to strong coupling
- Take PDF strong coupling as input: $\alpha_{S}(M_{Z}) = 0.1181(13)$ (error irrelevant for m_{t}^{MSR} , m_{t}^{pole})
- χ^2_{min} and δm_t^{stat} do not have any physical meaning
- PDF rescaling method: $(\chi^2_{min})^{rescale} = 1$

can be used to define an incompatibility uncertainty

Fit Result: Pythia 8.205 vs. Theory

 Γ_t =1.4 GeV, tune 7, m_t^{MC} = 173 GeV

 $\Omega_1 = 0.44 \text{ GeV},$ m_t^{MSR}(1GeV) = 172.81 GeV

- Good agreement of PYTHIA sith NNLL/NLO theory predictions
- Perturbative uncertainties of theory predictions based on scale uncertainties (profiles)
- MC uncertainties:
 - Vertical: rescaled statistical error (PDF rescaling method) → independent on statistics
 - Horizontal: fit coverage from 21 fit setups (incompatiblity uncertainty)

Convergence & Stability: MSR vs. Pole Mass

500 profiles; $\alpha_s = .118$; $\Gamma_t = 1.4$ GeV; tune 7; Q = 700, 1000, 1400 GeV; peak(60/80)%

Input: $m_t^{\text{MC}} = 173 \text{ GeV}$

fit to find $m_t^{\rm MSR}(1{\rm GeV})$ or $m_t^{\rm pole}$

- Good convergence & stability for MSR mass
- Mass m_t^{MSR}(1GeV) mass definition closest to the MC top mass m_t^{MC}.
- Pole mass shows worse convergence.
- Poles mass not compatible with MC mass within errors
- 1100/700 MeV difference at NLL/NNLL

Similar analyses from the 20 other Q-set and n-range setups.

Final Result for m_t^{MSR}(1 GeV)

- All investigated MC top mass values show consistent picture
- MC top quark mass is indeed closely related to MSR mass

within uncertainties: $m_t^{\text{MC}} \simeq m_t^{\text{MSR}} (1 \text{GeV})$

						10 E
	n	$n_t^{MC} = 1$	73 GeV ($\tau_2^{e^+e^-})$		
mass	order	central	perturb.	incompatibility	total	170-
$m_{t,1{ m GeV}}^{ m MSR}$	NLL	172.80	0.26	0.14	0.29	
$m_{t,1{ m GeV}}^{ m MSR}$	$\rm N^2 LL$	172.82	0.19	0.11	0.22	$m^{MSR}(1 C_{o}V) = m^{MC} [C_{o}V]$
m_t^{pole}	NLL	172.10	0.34	0.16	0.38	$(m_t (1 \text{ GeV}) - m_t)[\text{GeV}]$
$m_t^{ m pole}$	$\rm N^2 LL$	172.43	0.18	0.22	0.28	0.0
				\checkmark		
				Spread of		
from 21 fit setups						
o DV					170 171 172 173 174 1	
$\Omega_1^{\rm Pr} = 0$	0.41 ± 0	$.07 \pm 0.0$	$02 \mathrm{GeV}$ a	t NLL	m_{\star}^{MC} [Ge	
$\Omega_1^{\rm PY} = 0.$	42 ± 0.0	07 ± 0.03	BGeV at	$N^{2}LL$		

 $m_t^{\rm MSR}(1\,{\rm GeV})[{\rm GeV}]$ 175 <u>Calibration</u> : $(\tau_2^{e^+e^-})$ Pythia 8.205, tune 7 174 NNLL, $\Gamma_t = 1.4 \,\mathrm{GeV}$ 173 172

Conclusions

- SCET allows for high precision computations for jet physics
- SCET allows for very complicated mode setups to solve previously unsolved problems
- Soft-Collinear Effective Theory: aimed at making internal dynamics of jets accessible to pQCD and factorization in a systematically improvable matter

- Event shape distributions
- Monte-Carlo top quark mass calibration

MSR/MS Parametric Dependence on α_s

500 profiles; $\Gamma_t = 1.4,-1$ GeV;tune 7; diff. Q-sets; peak(60/80)%

 $m_t^{\mathrm{PYTHIA}} = 173~\mathrm{GeV}$

- α_s dependence: $m^{\text{scheme}}[\alpha_s] - m^{\text{scheme}}[.118]$
- small dependence of MSR mass on α_s ~ 50 MeV error ($\delta \alpha_s = .002$)
- large sensitivity of $\overline{\mathrm{MS}}$ mass on $lpha_s$
- not an error: calculated from MSR

MSR Mass Tune Dependence

500 profiles; $\Gamma_t = 1.4,-1$ GeV;tune 1, 3, 7; diff. Q-sets; peak(60/80)%

 $m_t^{\rm PYTHIA} = 173~{\rm GeV}$

- tune dependence: $m^{MSR}[tune] - m^{MSR}[7]$
- clear sensitivity to tune
- m^{MC} will depend on tune
- tune dependence is not a calibration uncertainty:

(different tune \Rightarrow different MC $\Rightarrow m_t^{MC}$)

Signal ttbar vs full $ee \rightarrow WWbb$

MadGraph 5 study:

- Non-resonant contributions are irrelevant for τ_2 distribution
 - PYTHIA (or similar MCs) will give a good description of the production process at LO
 - hemisphere invariant mass ~ top invariant mass (no pollution from background)

Particle Physics Colloquium, University Torino, Oct 7 2016

Pythia Study: Hemisphere Mass Cuts

- In our theory description we treat the top decay as inclusive w.r.t. hemisphere
 - violated by decay products which cross to the other hemisphere
 - no differential impact in resonance region (irrelevant when normalized to signal region)

Cuts on hemisphere invariant mass above and below:

$$M_i^{\mathrm{cut}} = m_t^{\mathrm{MC}} \pm \Delta^{\mathrm{cut}}$$

Pole Mass from MSR Mass

$$\begin{aligned} \alpha_s(M_Z) &= 0.118\\ n_f &= 5 \end{aligned}$$

$$m_t^{\text{pole}} - m_t^{\text{MSR}}(1 \text{ GeV}) = & \begin{array}{c} \mathcal{O}(\alpha_s) & \mathcal{O}(\alpha_s^2) & \mathcal{O}(\alpha_s^3) & \mathcal{O}(\alpha_s^4) \\ &= 0.173 + 0.138 + 0.159 + 0.23 \text{ GeV} &\longleftarrow \text{ calculated} \\ &+ 0.53 + 1.43 + 4.54 + 16.6 \text{ GeV} \\ &+ 68.6 + 317.7 + 1629 + 9158 \text{ GeV} \end{aligned}$$

• Size of terms consistent with scale error estimate of calibration.

• No stable determination of pole mass.

Top Mass Reconstruction Error Budget

	$m_{\rm t}$ fit type					
Lepton+jets channel		2D	1D	hybrid		
	$\delta m_{\rm t}^{\rm 2D}({ m GeV})$	δJSF	$\delta m_{\rm t}^{\rm 1D}({\rm GeV})$	$\delta m_{\rm t}^{\rm hyb} ({\rm GeV})$		
Experimental uncertainties						
Method calibration	0.04	0.001	0.04	0.04		
Jet energy corrections						
– JEC: Intercalibration	< 0.01	< 0.001	+0.02	+0.01		
 – JEC: In situ calibration 	-0.01	+0.003	+0.24	+0.12		
- JEC: Uncorrelated non-pileup	+0.09	-0.004	-0.26	-0.10		
- JEC: Uncorrelated pileup	+0.06	-0.002	-0.11	-0.04		
Lepton energy scale	+0.01	< 0.001	+0.01	+0.01		
$E_{\rm T}^{\rm miss}$ scale	+0.04	< 0.001	+0.03	+0.04		
Jet energy resolution	-0.11	+0.002	+0.05	-0.03		
b tagging	+0.06	< 0.001	+0.04	+0.06		
Pileup	-0.12	+0.002	+0.05	-0.04		
Backgrounds	+0.05	< 0.001	+0.01	+0.03		
Modeling of hadronization						
JEC: Flavor-dependent						
– light quarks (u d s)	+0.11	-0.002	-0.02	+0.05		
– charm	+0.03	< 0.001	-0.01	+0.01		
– bottom	-0.32	<0.001	-0.31	-0.32		
– gluon	-0.22	+0.003	+0.05	-0.08		
b jet modeling						
 b fragmentation 	+0.06	-0.001	-0.06	<0.01		
– Semileptonic b hadron decays	-0.16	<0.001	-0.15	-0.16		
Modeling of perturbative QCD						
PDF	0.09	0.001	0.06	0.04		
Ren. and fact. scales	$+0.17\pm0.08$	-0.004 ± 0.001	-0.24 ± 0.06	-0.09 ± 0.07		
ME-PS matching threshold	$+0.11\pm0.09$	-0.002 ± 0.001	-0.07 ± 0.06	$+0.03\pm0.07$		
ME generator	-0.07 ± 0.11	-0.001 ± 0.001	-0.16 ± 0.07	-0.12 ± 0.08		
Top quark <i>p</i> _T	+0.16	-0.003	-0.11	+0.02		
Modeling of soft QCD						
Underlying event	$+0.15\pm0.15$	-0.002 ± 0.001	$+0.07\pm0.09$	$+0.08\pm0.11$		
Color reconnection modeling	$+0.11\pm0.13$	-0.002 ± 0.001	-0.09 ± 0.08	$+0.01\pm0.09$		
Total systematic	0.59	0.007	0.62	0.48		
Statistical	0.20	0.002	0.12	0.16		
Total	0.62	0.007	0.63	0.51		

 $m_t^{\text{MC}} = 172.44 \pm 0.49$ (CMS Run-1 final, 2015) arXiv:1509.04044

A NLO ME corrections

b(oosted)HQET Factorization

Jet function:

$$B_{+}(2v_{+}\cdot k) = \frac{-1}{8\pi N_{c}m} \operatorname{Disc} \int d^{4}x \, e^{ik\cdot x} \langle 0| \mathrm{T}\{\bar{h}_{v_{+}}(0)W_{n}(0)W_{n}^{\dagger}(x)h_{v_{+}}(x)\}|0\rangle$$

- perturbative, any mass scheme
- depends on m_t, Γ_t
- Breit-Wigner at tree level
- <u>Gauge-invariant off-shell top</u> <u>quark</u> dynamics

$$W = \sum_{m=0}^{\infty} \sum_{\text{perms}} \frac{(-g)^m}{m!} \frac{\bar{n} \cdot A_{n,q_1}^{a_1} \cdots \bar{n} \cdot A_{n,q_m}^{a_m}}{\bar{n} \cdot q_1 \, \bar{n} \cdot (q_1 + q_2) \cdots \bar{n} \cdot (\sum_{i=1}^m q_i)} T^{a_m} \cdots T^{a_1}$$

$$\mathcal{B}_{\pm}(\hat{s}, 0, \mu, \delta m) = -\frac{1}{\pi m} \frac{1}{\hat{s} + i0} \left\{ 1 + \frac{\alpha_s C_F}{4\pi} \left[4\ln^2 \left(\frac{\mu}{-\hat{s} - i0} \right) + 4\ln \left(\frac{\mu}{-\hat{s} - i0} \right) + 4 + \frac{5\pi^2}{6} \right] \right\} \\ - \frac{1}{\pi m} \frac{2\delta m}{(\hat{s} + i0)^2} \left[\frac{1}{\pi m} \left(\frac{\mu}{\hat{s} + i0} \right) + 4\ln \left(\frac{\mu}{-\hat{s} - i0} \right) + 4 + \frac{5\pi^2}{6} \right] \right\} \\ - \frac{1}{\pi m} \left[\frac{2\delta m}{(\hat{s} + i0)^2} + 4\ln \left(\frac{\mu}{-\hat{s} - i0} \right) + 4\ln \left(\frac{\mu}{-\hat{s} - i0} \right) + 4 + \frac{5\pi^2}{6} \right] \right]$$

Fleming, AHH, Mantry, Stewart 2007

Is the pole mass determining the top single particle pole?

MSR Mass Definition

AH, Stewart: arXive:0808.0222 $m_t^{\text{MC}} = m_t^{\text{MSR}}(3^{+6}_{-2} \text{ GeV}) = m_t^{\text{MSR}}(3 \text{ GeV})^{+0.6}_{-0.3}$ 180 $\overline{m}(\overline{m})$ Tevatron Good choice for R: 170 Of order of the typical scale of the observable used to m(R)measure the top mass. 1S, PS,... 160 masses R=m(R)150 50 100 150 0 R Peak of Total cross section, invariant mass e.w.precsion obs., distribution, endpoints Unification, MSbar mass Top-antitop threshold at the ILC

Masses Loop-Theorists Like to use

