Multiquark Resonances

AD Polosa Cern and Sapienza University of Rome

CHARGED EXOTIC RESONANCES

BES III BELLE (2013)

 $e^+e^- \rightarrow \gamma \gamma (4.26)$ $\longrightarrow \pi^+ Z_c^-(3.9)$ $\rightarrow \pi^{-} J/\psi$ 1° J^{PC} = 1+1+-, P ~ 50 MeV another decay modes of Y i's $\gamma(4.26) \longrightarrow \gamma(X(3.872)$ L> DO* J/4 n+ n-J/4 T+TT+0

Ze IS A 4-QUARK RESONANCE CCdū 1/12

Charged $Z_c(3900)$

Found in $Y(4260) \rightarrow Z_c^{\pm}(3900) \pi^{\mp} \rightarrow J/\psi \pi^{\pm} \pi^{\mp}$ Exotic charged charmonium-like state!

$$G = G_{\pi}C_{J/\psi} =$$

$$= -1(-1) = +1$$

$$P = +1 (S - \text{wave})$$

$$\Rightarrow Z_c^0 \text{ has } J^{PC} = 1^{+-}$$

 $M = 3899.0 \pm 3.6 \pm 4.9 \text{ MeV}$ $\Gamma = 46 \pm 10 \pm 20 \text{ MeV}$ Belle, arXiv:1304.0121

 $M = 3894.5 \pm 6.6 \pm 4.5 \text{ MeV}$ $\Gamma = 63 \pm 24 \pm 26 \text{ MeV}$

(a company (do any XBIII)

willigx/was +) / and via

X(3872)

DISCOVERED BY BELLE IN 2003 CONFIRMED BY BUBAR, DØ, CDF, CMS, LHCG & ATLAS!

4 $pp \rightarrow \chi(3872) @CMS$

4 Measurement of the cross section ratio

PROMPT PRO DUCTION

Figure 1: The J/ $\psi \pi^+ \pi^-$ invariant-mass spectrum for $10 < p_T < 50$ GeV and |y| < 1.2. The lines represent the signal-plus-background fits (solid), the background-only (dashed), and the signal-only (dotted) components. The inset shows an enlargement of the X(3872) mass region.

2/30

 $J^{PC} = l^{++}$ The largest BR 15 $X \to \tilde{D}^o D^{*o}$ and MX = Mo + MDKO! 3. ... but it was discovered in another chamel $\chi \rightarrow J/\psi o^{\circ}$

INTERESTING FACTS ABOUT'X'

and MX = MJ/4 + Mpo !! What about Xt -> J/4 gt ? Never observed_

4.

1.

2.

$$X \rightarrow J/4 u$$

$$\begin{array}{l} \mathcal{Z} \\ \mathcal{$$

Is there any relation between $Z_c(3.9)$ and X(3.872)?

- X is neutral no charged partner ever found
- Z_c appears in all three states of charge
- X and Z_c almost degenerate
- opposite G-parity

Both compact tetraquarks?... Where is X+? Both molecules?... One of the two has *positive* binding energy?!

CHARGED EXOTIC RESONANCES

It should be searched in prompt pp collisions at LHC

The relative motion must be compatible with the formation of a compact tetraquark

Eijn c'd Eixm Ex um

CHARGED EXOTIC RESONANCES

$$\overline{T} \left(= -\overline{E} \right) \simeq \frac{1}{2} m_c \alpha_c^2 (2m_c) \approx 50 \, \text{MeV}$$

However color might be neutralized also in two singlits

in all min configurations preximing the spin of the heavy quark pair.

Bound states may not be formed (continuum spectrum) yet we may expect

 $E < E_{max} < |E|$

'HADRONIZATION STATE' Superposition with unknown coefficients $\Psi = \left[cd \right] \left[\overline{c} \overline{u} \right] + \Psi \pi^{-} + \Psi' \pi^{-} + \eta_{c} \rho + \overline{D} D^{*} + \overline{D}^{*} \overline{D}^{*}$ $= \Psi_{d} + \sum_{i} \Psi_{m_{i}}$ $\Psi = \Psi_{Q} + \Psi_{P} = Q\Psi + Q\Psi$ $H\Psi = \Xi \Psi$ $(E - H_{PP}) \underline{\Psi}_{p} = H_{PQ} \underline{\Psi}_{Q}$ $(E - H_{QQ}) \Psi_Q = H_{QP} \Psi_P$ $H_{pp} = H_0 + V_1 \leq (E - H_{pp} - V_I) \Psi_p = 0$ $H_{QQ} = H_0 + V_2$ EFFECTIVE INT. $V_{I} = H_{PQ} \frac{1}{E - H_{QQ} + i\epsilon} H_{QP}$ IN THE PSPACE

 $(P \rightarrow Q \rightarrow P)$

16/05/16

OPEN & CLOSED CHANNELS

Would - be had son molecules in P, may momentarily rearrange their internal structure into compact tetraquorks: this happens w/ probability

$$\sigma \sim \frac{12ma!}{p} \sim \frac{1}{p} \frac{\epsilon}{(r-\epsilon)^2 + \epsilon^2}$$

$$d\Gamma \sim \rho \tau \sigma \sim \delta(\epsilon - \delta)/2 c a_p / (2m)^{\frac{1}{2}} \sqrt{\epsilon} d\epsilon$$

$$E < E_{max}$$

If I falls within Emax

THIS MIGHT HAPPEN ONLY FOR ONE OF THE THRESHOLDS IN Y, HU CLOSER (in energy) FROM BELOW TO EMED -

CHARGED EXOTIC RESONANCES

The Z_c (3.99) is not the only one.

 $Z_c^{2\mp}(4.025) \rightarrow \pi^{\mp} h_c$

 $Z_{L}^{\overline{\tau}}(10.61) \rightarrow \pi_{\overline{\tau}} \Upsilon(\mathfrak{m}_{L})$ $Z_{h}^{\prime\mp}(10.65) \longrightarrow \pi\mp h_{b}(kP)$

BELLE (2012)

	MOL	8
Zc	DD*	~24 MeV
Z_c'	D* D*	~ 8 MeV
Z6	в в*	~ 6 MeV
Z_{6}^{\prime}	B* B*	al MeV

A. ESPOSITO, A. PILLONI, ADP 1603.07667 (PLB)

A NEW $\mathbf{B}^{0}{}_{\mathrm{s}}\pi^{\pm}$ State Claimed by DØ

[DØ: arXiv:1602.07588]

Claimed observation with 5.1 σ significance of an exotic state $\checkmark X(5568) \rightarrow B_s^{\ 0}\pi^{\pm}, B_s^{\ 0} \rightarrow J/\psi \phi, J/\psi \rightarrow \mu^+\mu^-, \phi \rightarrow K^+K^ M = 5567.8 \pm 2.9^{+0.9}_{-1.9} \text{ MeV}/c^2$ $\Gamma = 21.9 \pm 6.4^{+5.0}_{-2.5} \text{ MeV}/c^2$

✓ Fraction of B_s^0 from X decay: $\rho_X^{DØ} = (8.6 \pm 1.9 \pm 1.4)$ %

LHC Seminar, 22/03/16

M. Pappagallo

JUST FOR CURIOSITY...

LHC Seminar, 22/03/16

18

LHCb-CONF-2016-004

If $\rho_X^{\text{LHCb}} = \rho_X^{\text{DØ}} = 8.6\%$, how would the X(5568) signal look like? (Both modes combined: $p_T(B_s) > 10 \text{ GeV/c}$) Candidates / (4 MeV/c²) Claimed X(5568) state -LHCb Preliminary 250 Combinatorial 200 150 100 50 5520 5540 5560 5620 5640 5660 5680 5700 5580 5600 $m(B_{a}^{\circ}\pi^{\dagger})$ [MeV/c²]

M. Pappagallo

1. Not all meson-meson thresholds concepond to a resonance (loosely bound molecules) 2. Not all diquarkonia' manifest in the spearm. A FAVOURABLE DETUNING MUST OCCUR SETO, Emax] This night explain very some observed isospin

multiplets are incomplete.

• A pure diquor coniver theory predicts $X^{o}, X^{+}, X^{-} O 3872 MeV$ • What about X_{b} ? • What about X_{b} ?

4qggi

DATA FROM ALICE

For those who think that we are observing real hadron molecules

A Esposito et al. PRD 92 (2015) 034028

Diquarks and Exotic Hadrons

Jaffe and Wilczek hep-ph/0307341 (PRL) Maiani, Piccinini, ADP, Riquer, hep-ph/0412098 (PRD)

 $d^{S,A} = q^{\alpha} \Gamma q'^{\beta} \pm q^{\beta} \Gamma q'^{\alpha}$

BUILD NEW HADRONS WITH

 $\overline{q}\overline{q}\overline{q} \xrightarrow{S} d^{A}\overline{q}\overline{q} \xrightarrow{} \rightarrow d^{A}\overline{d}^{A}$ $\overline{\tau} \qquad TETRAQUARK (changed & meutrae!)$ > d^A d^A q PENTAQUARK -> dAdAdA DIBARYON (B=2)

16/30

DIQUARKONIA

 $\begin{cases} H \approx 2 \kappa_{Qq} \cdot \left(\vec{S}_{q} \cdot \vec{S}_{q} + \vec{S}_{\bar{q}} \cdot \vec{S}_{\bar{q}}\right) \\ \text{the spin of leavy-light diquerks conbe 0, 1} \\ \text{curd is conserved in strong interactions.} \end{cases}$

From phenomenology

which in the diquarkonium baris

$$|S_{cq}, S_{\bar{z}\bar{q}}\rangle \begin{cases} Z = \frac{1}{\sqrt{2}} (11,0) - 10,1 \rangle \\ Z' = 11,1 \rangle_{I=J} C = (-)^{J} \\ X = \frac{1}{\sqrt{2}} (11,0) + 10,1 \rangle 1^{++} \end{cases}$$

DIQUARKONIA

 $\begin{pmatrix} H \end{pmatrix}^{l+-} = \begin{vmatrix} -k & 0 \\ 0 & k \end{vmatrix} + 2m_{\mathbb{E}_{qq}} \mathcal{I} \longrightarrow \mathcal{M}_{2'} - \mathcal{M}_{2} = 2k \\ M_{2} + \mathcal{M}_{2'} = 4m_{\mathbb{E}_{qq}} \mathcal{I}$

$$(H)'' = -k + 2 m_{\text{Tag}} 1 \longrightarrow M_2 2 M_X$$

Therefore MIGQI = 5315 MeV Kog = 22.5 MeV and for the Døstate [bg][59'] in BgT

$$M = m_{[bq]} + m_{[sq]} + 2 \kappa_{bq} \overline{S}_{\overline{b}} \cdot \overline{S}_{\overline{q}} + 2k_{sq} \overline{S}_{s} \cdot \overline{S}_{q'}$$

= $m_{[bq]} + (m_{[sq]} - 3/_2 \kappa_{sq}) - 3/_2 \kappa_{bq}$

4qggi

A. ESPOSITO, A. PILLONI, ADP 1603.07667 (PLB)

DIQUARKONIA

$$\begin{pmatrix} H \end{pmatrix}^{I+-} = \begin{pmatrix} -k & 0 \\ 0 & k \end{pmatrix} + 2m_{\epsilon q g} \mathcal{I} \rightarrow M_{2'} - M_{2} = 2k \\ M_{z} + M_{2'} = 4m_{\epsilon q g} \mathcal{I} \rightarrow M_{z'} = 4m_{\epsilon q g} \mathcal{I}$$

$$(H)^{1++} = -k + 2m_{\text{Tag}} 1 \longrightarrow M_2 2M_X$$

$$(H)^{2^{++}} = R$$

$$(H)^{0^{++}} = -3R$$

$$(H)^{0^{++'}} = R$$

Pentaquarks

based on 1507.04980 with L. Maiani and V. Riquer (Sapienza U.)

THE PENTARUARK

Highly underivable option for molecules (before discovery) Perfect molecule (after discovery) LHC6 2015 $\Lambda_b(bud) \rightarrow \mathcal{K} \mathbb{P}^+$ L>J/4p P= C cuud = megative parity TWO STATES OBSERVED J= 3/2 @ 4380 MeV J= 5/2 + @ 4550 MeV L=0 & L=1 Pentaquorks? Note: Lower baryons have P=+/pendag. have P=-Lower mesons have P=-/tetrag. have P=+

MASS DIFFERENCE

ISN'T AM = 170 MeV too. SMALL for one unit of L? (AM=300 Mer for 1(1405) - 1(1116)) On the other hand, from Z_-A_ we find M [99']_{S=1} - M_{E99']_{S=0} ~ 200 MeN} Ço $\mathbb{P}(3/2^{-}) = \overline{C} [Cq]_{S_{z}} [q'q'']_{S_{z}} @ L = 0$ $\mathcal{P}(5/^{+}) = \mathcal{C}[cq]_{S=0} \mathcal{L}^{q} \mathcal{I}_{S=0} \mathcal{C} \mathcal{L}^{=} \mathcal{I}$

... combine d'quork prin & orbital angular momentan -Othez states?

 $/ \rightarrow K^- P^+$

A baryon might contain a Eud Is=0, "good" digurk. but $P(3/2^-)$ should contain $TvdJ_{S=1}$, whereas $P(5/2^+)$ has tud]s=0.

One can show that both pentaguales have $S_{c\bar{c}} = 1 \Rightarrow that$ HQ spincons. allows decay into J/ψ .

L Maiani, ADP, V Riquer, PRD 749 (2015) 289; PLB 750 (2015) 37

4qatnikhef

27/01/16

Flavor $< P, M | H_{w} (\Delta I = 0, \Delta S = -1) | \Lambda_{f} >$ $\mathcal{S}_{\mathcal{F}} = \frac{\mathcal{S}_{\mathcal{F}}}{(from 5, d, u)} = \frac{\mathcal{S}_{\mathcal{F}}}{(from [ucl])}$ Cherefore Pris either & or 10 (#) We might expect $\Lambda_b \to \pi \mathbb{P}_{10}^{S=-1} \to \pi \mathcal{T}/\psi \mathbb{Z}(1305)$ $\Lambda_b \to k \mathcal{P}_{10}^{5=-2} \to k J/4 \equiv (1530)$

or even

 $SZ_b \longrightarrow \phi \mathbb{P}_{10}^{S=-3} \longrightarrow \phi J/4 SZ^-(1672)$

 $\begin{array}{c} (*) \\ & \end{array} \\ & = 1 \\ \oplus \end{array} \\ & \end{array} \\ & \end{array} \\ & \oplus \end{array} \\ & \oplus \end{array} \\ & = 1 \\ \oplus$

Large N and tetraquarks

based on 1605.04839 with L. Maiani and V. Riquer

see G. Rossi and G. Veneziano 1605.04285 for an alternative approach

large N-QCD & Tetraquorks

Reputation of Actraquorks obscured by some considerations by Witten and Coleman (Witten Nucl. Phys. <u>B160</u> (1979)

Quark theory Me i M

Meson theory

large N-QCD & Tetraquorks

IF TETRAQUARKS DEVELOP A POLE, IT WILL BE IRRELEVANT IF THE RESIDUE IS OF ORDER 1/N WRT DISCONNECTED PARTS_ [S. Weinberry PEL 2013]

MOREOVER THE WIDTH TY ~ 1/N -

fug fug-M

fyg~ JN fyg-m~N°

large N-QCD & Tetraquorks

1. Aren't those cuts equivalently leading to Witten's argument? 2. Why the mixing should appear at a different Norder in different diagrous?

J~ f_m-49

 $f_{M-4q} \sim \frac{1}{\sqrt{N}}$

Large N-QCD & Tetraquorks

Consider a charged tetroquoik coul finct.

Con be 'untristed' : does it really contain a tetraquerk pole?

ONE CAN SHOW THAT DIQUARKONIA GIVE THE RIGHT DESCRIPTION OF THE INTERMEDIATE 49-STATE! 16/05/16

Non-planar diagrams

Large N- QCD & Tetraquorks Μ fyg-M + Μ $\sim \frac{1}{N^2} \left(\Xi \frac{N}{(\sqrt{N})^6} \right)$ J 1/2 fyg-M~ NVN М fyg-M $\sim \frac{1}{N^2}$ -fuq $\sim \frac{1}{N} \left(\equiv \frac{N}{(\sqrt{N})^{\vee}} \right)$ m 49 fyg~ N°

16/05/16

SUMMARY

About 20 (exotic) resonances have been discovered

 Some have complete I - multiplets, some do not
 Most of them close to M-M thresholds (above!)
 Diquoiks predict charged states & pentaguocks -But need complete I - multiplets_ Several quantum multiplets pudicted 0", 2"...

4. Very similor problems with loosely band molecules -

- A FESHBACH PHENOMENON AT WORK IN STRONG INTERACTIONS?

Combining diquarkania pudictions and threshold psitions, a new picture might emerge - Backup

 $(T_{i})_{i\ell} (T_{4}^{+})_{ji} (T_{2})_{\kappa j} (T_{3}^{+})_{\ell \kappa} = \langle T_{i}^{*} T_{3}^{+} T_{2}^{*} T_{4}^{+} \rangle$ (spin natrices : 02,0202) $(\overline{D}^{*} \wedge D^{*+})^{\circ}$ D° (D*+)⁶ $D^+(\overline{D}^{*o})^{b}$ n (e+)a 1.18ab 2 (418+)a The JP=1+, G=-1 state conosponds to $i (\underline{4} \wedge \underline{9}^{+}) \pm \overline{D}^{\circ} D^{*+} - D^{+} \overline{D}^{*\circ}$ (*)

Binding energy and decay rates

$$B \simeq \frac{G^4}{512 \, \pi^2} \frac{m^5}{(m_a m_b)^4}$$

 $\mathcal{B}(X \to DD\pi) \cdot \Gamma(X) \sim G^2 \sim \sqrt{B}$

ADP 1505.03083 PLB

CHARGED RESONANCES

LACE 2014 confirms BELLE 2007 (§ disproves Baber 2007) $B \longrightarrow K^{+}Z^{-}(4430)$ $L_{3}\Psi(25)\pi^{-}$

0708.3997 " A CRUCIAL CONSEQUENCE OF Z⁻ IS A CHARGED STATE IN J/4 π[±] AT 3880 MeV " (Z⁻ is its nadial excitation) M(4(2S)) - M(4) ~ M(Z(4430)) - M(Z(3880))

BES 11/ FOUND 2 (3900) IN 2013,

CHARGED RESONANCES HAVE NOT (YET?) BEEN SEARCHED/OBSERVED IN PP PROMPT COLLISIONS,

Z(4430)⁻ at LHCb | April 2014

First observed by BELLE in 2007 and not confirmed by BaBar at that time

A DODTO MOLECULE?

The previous arguments rely on T~O What is T (barycentric energy of DD* after subtraction of rest manes) IN PP collisions at LHC with HIGH P1 CUTS?

A DODTO MOLECULE? The previous arguments rely on T~0 What is T (barycentric energy of DD* after subtraction of sert manes) IMPP collisions at LHC with HIGH PL CUTS? (IPB | ~ IPB+) Pree = 27 (克) Prol ~ T P(Freel)= (1Prel)~40% $|\vec{P}_1|^2 - (|\vec{P}_{nee}|/2)^2$

8 / 30

RESCATTERINGS WITH HADRONS (T) MIGHT HELP TO DECREASE [Free] IN THE DOT AAR

A Esposito et al. J.Mod.Phys. 4 (2013) 1569 A Guerrieri et al. PRD 90 (2014) 034003 C Bignamini et al PRL 103 (2009) 162001

· THE MOST PROBABLE OON CONFIGURATIONS HAVE HIGH I Fuel . THIS IS MORE AND MORE VISIBLE INCREASING THE COT IN [P] . THE PEED-DOWN OBTAINED BY RESCATTERING ON 1,2,3 TO IS NEGLICIBLE.