## Quantum entanglement: from conclusive tests of Bell inequalities to quantum tech

CLASSICAL MECHANICS: OUR EVERY DAY LIFE





## Fullerene: a quantum ball



Pressure $\sim 5 \cdot 10^{-7}$ mbar

## The measurement problem

The von Neumann chain:
(|a1>,|a2> quantum states,
|M0> initial state of detection apparatus
|M1>, |M2> final states of detection apparatus)
$|\mathrm{al}>|\mathrm{M} 0>\rightarrow| \mathrm{al}>| \mathrm{M} 1>$
$|\mathrm{a} 2>|\mathrm{M} 0>\rightarrow| \mathrm{a} 2>| \mathrm{M} 2>$
QM is linear:
$(a|a 1>+b| a 2>)|M 10>\rightarrow a| a l>|M I 1>+b| a 己>|M| 2>$
The detection apparatus is entangled as welll?

## The sad story of Schrödinger cat


"About your cat, Mr. Schrödinger-I have good news and bad news.'

Schrödlinger cat paradox
(A)

II Gatto di Schrodinger
$(\mathrm{a}|\mathrm{H}>+\mathrm{b}| \mathrm{V}>)|\mathrm{M} 0>| c a t>$
(B)
a $|\mathrm{H}>|\mathrm{M} 1>|$ cat alive $>+$ b $|\mathbf{V}>|\mathbf{M} 2>|$ dead cat $>$




## Alternatives:

- Hidden variable Theories
- Collapse models
- Many worlds
- | Qubism (?)|



## Spontaneous localization models

## Ghirardi - Rimini- Weber

$$
\Psi\left(x_{1}, \ldots, x_{N}\right) j\left(x-x_{i}\right) / R
$$

$$
j\left(x-x_{i}\right)=A \exp \left[-\left(x-x_{i}\right)^{2} /(2 a)^{2}\right]
$$

$$
|R(x)|^{2}=\int d x_{1} \ldots d x_{N}\left|\Psi\left(x_{1}, \ldots, x_{N}\right) j\left(x-x_{i}\right)\right|^{2}
$$

$a \sim 10^{-7} \mathrm{~m}$, rate $\sim 10^{-17} \mathrm{~s}^{-1}$

## Possible experimental tests:

| Upper bounds on $\lambda$ |  |
| :---: | :---: |
| Laboratory <br> experiments | Decades above the <br> conventional value |
| Fullerene diffraction |  |
| experiments |  |
| Decay of |  |
| supercurrents |  |$\quad 13$

## From S. Adler and A. Bassi

 Science 325 (2009) 275

## Is QM a complete theory?

1935 Einstein, Podolsky, Rosen posed the question if is Quantum Mechanics a complete theory ?.
i) Element of Physical reality : If we can predict with certainty the value of an observable without disturbing the system
ii) No action at distance

$$
\begin{gathered}
|H>|V>-|V>| H> \\
\sqrt{2} 2 \\
\frac{|45>|-45>-|-45>| 45>}{\sqrt{2}}
\end{gathered}
$$



## Quantum Non Locality compatible with special relativity



0100011101110011110000
$\frac{|H>|V>-|V>| H\rangle}{\sqrt{2}}$


010001110111001110080

$$
W_{12} \rightarrow W_{12}^{\prime}=\sum_{s} P_{s}^{1} W_{12} P_{s}^{1}
$$

The reduced trace is:

$$
W_{2}=\operatorname{Tr}_{1}\left[W_{12}^{\prime}\right]=\operatorname{Tr}_{1}\left[\sum_{k} P_{k}^{1} W_{12} P_{k}^{1}\right]=\sum_{k} \operatorname{Tr}_{1}\left[P_{k}^{1} W_{12} P_{k}^{1}\right]
$$

By using trace properties:

$$
W_{2}=\sum_{k} \operatorname{Tr}_{1}\left[P_{k}^{1} W_{12} P_{k}^{1}\right]=\sum_{k} \operatorname{Tr}_{1}\left[P_{k}^{1} W_{12}\right]=\operatorname{Tr}_{1}\left[\sum_{k} P_{k}^{1} W_{12}\right]=\operatorname{Tr}_{1}\left[W_{12}\right]
$$

That is exactly the same reduced density operator we would have obtained without any measurement

## 1964 Bell Theorem

entangled states


Bell inequalities


Possible testing every Local Hidden Variables Theory against Standard QM.


## Example : the CH inequality

$$
\begin{aligned}
& P\left(\theta_{1}, \theta_{2}\right)+P\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}\right)+P\left(\theta_{1}^{\prime}, \theta_{2}\right)- \\
& -P\left(\theta_{1}, \theta_{2}^{\prime}\right)-P\left(\theta_{1}^{\prime}\right)-P\left(\theta_{2}\right) \leq 0
\end{aligned}
$$

$P\left(\theta_{i}\right)=$ Probability of finding a single particle in detector $i$ with a certain property $\theta_{i}$ (e.g. spin/polarization direction with respect to a selected axis);
$P\left(\theta_{i}, \theta_{j}\right)=$ Joint probability of observing both one particle in $i$ with a property $\theta_{i}$ and the other in $j$ with $\theta_{j}$.

In a Local HVT:

$$
\begin{aligned}
& P\left(\theta_{i}\right)=\int P\left(\theta_{i}, x\right) \rho(x) d x \\
& P\left(\theta_{i}, \theta_{j}\right)=\int P\left(\theta_{i}, \theta_{j}, x\right) \rho(x) d x=\int P\left(\theta_{i}, x\right) \cdot P\left(\theta_{j}, x\right) \rho(x) d x
\end{aligned}
$$

Consider 4 real variables $\quad x, x^{\prime}, y, y^{\prime} \in[0,1]$

$$
x y+x^{\prime} y^{\prime}+x^{\prime} y-x y^{\prime}-x^{\prime}-y \leq 0 \quad ? ?
$$

$$
x \geq x^{\prime} \Rightarrow y(x-1)+x^{\prime}(y-1)+y^{\prime}\left(x^{\prime}-x\right) \leq 0
$$

$$
x \leq x^{\prime} \Rightarrow y\left(x^{\prime}-1\right)+x^{\prime}\left(y^{\prime}-1\right)+x\left(y-y^{\prime}\right) \leq x^{\prime}\left(y^{\prime}-1\right)+x(y-
$$

$P\left(\theta_{i}\right), P\left(\theta_{i}, \theta_{j}\right) \in[0,1] \quad \Rightarrow \quad$ The $\mathbf{C H}$ inequality holds

but

$>0$


| 10 |
| :--- | :--- |







$\mathrm{CH}>0$
For ce

Many experimental tests :
A. Aspect et al., PRL. 49 (1982) 1804; J. P. Franson, PRL 62 (1989) 2205; J. G. Rarity and
P. R. Tapster, PRL 64 (1990) 2495; J. Brendel et al., EPL 20 (1992) 275; P. G. Kwiat et al.
A. Aspect et al., PRL. 49 (1982) 1804; J. P. Franson, PRL 62 (1989) 2205; J. G. Rarity and
P. R. Tapster, PRL 64 (1990) 2495; J. Brendel et al., EPL 20 (1992) 275; P. G. Kwiat et al. PRA 41 (1990) 2910; T.E. Kiess et al., PRL 71 (1993) 3893; P.G. Kwiat et al., PRL 75 (1995)
4337 ; ... PRA 41 (1990) 2910; T.E. Kiess et al., PRL 71 (1993) 3893; P.G. Kwiat et al., PRL 75 (1995)
4337; ...
,

\section*{Various other inequalities, (Bell $1 \& 2, \mathrm{CHSH}, \ldots$ )

## Various other inequalities, (Bell $1 \& 2, \mathrm{CHSH}, \ldots$ ) <br> Various other inequalities, (Bell 1 \& 2, CHSH, ...)

 <br> Various other inequalities, (Bell 1 \& 2, CHSH, ...)}> For certain values of parameters in SQM
> All confirm SQM: but low detection efficiency
(
?
$-$

$\qquad$
$\square$

## In 70's experiments with cascade atomic decay

82 Orsay experiment (a. aspect et a2t, prat. 49 (1982) 18044)

Entangled photons from J=0 J=1 J=0 Calcium 40 decays
Addressed to detectors separated of 6 m
Space-like separation through acousto-optic switches

$$
C H=0.101 \pm 0.020
$$

## Other systems?

i) Ions: Experiment with Berillum ions

High efficiency ( $98 \%$ ), but subsystems are not separated during measurement (Rowe et al., Nature 409 (01) 791)
Improvement more recently: 1 m [Monroe et al., qph 0801.2184]
One needs many km (detection time around $50 \mu \mathrm{~s}$ )
iii) Neutrons [Rauch]
iiii) Mesons ( $\mathrm{K}_{-}$, B$)$ (Foadi. Selleri PRA 61 (99) 012106-1,EPJ Cl4 (00) 469; Di Domenico NP B 450 (95) 293:Bramon,Gartarino. PRL 89 (02) 160401, Hiesmayr Fpl 14 (01) 231$]$


Some violation of Bell inequalites osserved by Belle [A.Go, JMO 5/ (04)991]
detection loophole reappears as HV can also determine
a) decay channel [M.G. et al., PLB 513 (01) 401, FP 32 (02) 589]
b) time of decay [MG, PRA 69 (04) 022103]

## Parametric Down Conversion

## Nonlinear crystal



- Energy conservation: $\omega_{p=} \omega_{\mathrm{s}}+\omega_{\mathrm{i}}$
- Momentum conservation: $\overrightarrow{\mathbf{k}}_{\mathbf{p}}=\overrightarrow{\mathbf{k}}_{\mathbf{s}}+\overrightarrow{\mathbf{k}}_{\mathbf{i}}$
- $\omega_{s}$ and $\omega_{i}$ are emitted at the same time


## type I PDC



## type II PDC



## Brilliant sources:



Type II PDC

$$
[(|H>|V>+1 V>| H>)]
$$

Th: A. Garuccio EXP: Zeilinger,
$\sqrt{(2)}$
Sergienko, Kwiat et al.PRL 75 (95) 4337

## 102 standard deviations violation <br> [P. Kwiat et al.,]

$$
[(|\mathrm{H}>|\mathrm{H}>+\mathrm{f}| \mathrm{V}>| \mathrm{V}>)]
$$



## Two type I PDC

Th: Hardy

$$
\sqrt{ }\left(1+|f|^{2}\right)
$$

Exp: P. Kwiat et al., PRL 83 (99) 3103
G. Brida, M.G., C. Novero and E. Predazzi, PLAZ68 (2000) 12

$$
\mathrm{CH}=513 \pm 25
$$

## PHOTODETECTORS:DETECTION LOOPHOLE



A transition-edge sensor is a thermometer made from a superconducting film operated near its transition temperature Tc.



## Bell violation using entangled photons without the fair-sampling assumption

Marissa Giustina ${ }^{1,2 *}$, Alexandra Mech ${ }^{1,2 *}$, Sven Ramelow ${ }^{1,2 *}$, Bernhard Wittmann ${ }^{1,2 *}$, Johannes Kofler ${ }^{1,3}$, Jörn Beyer ${ }^{4}$, Adriana Lita ${ }^{5}$, Brice Calkins ${ }^{5}$, Thomas Gerrits ${ }^{5}$, Sae Woo Nam ${ }^{5}$, Rupert Ursin ${ }^{1}$ \& Anton Zeilinger ${ }^{1,2}$

PRL 111, 130406 (2013)

Detection-Loophole-Free Test of Quantum Nonlocality, and Applications
B. G. Christensen, ${ }^{1, *}$ K. T. McCusker, ${ }^{1}$ J. B. Altepeter, ${ }^{1}$ B. Calkins, ${ }^{2}$ T. Gerrits, ${ }^{2}$ A. E. Lita, ${ }^{2}$ A. Miller, ${ }^{2,3}$ L. K. Shalm, ${ }^{2}$ Y. Zhang, ${ }^{2,4}$ S. W. Nam, ${ }^{2}$ N. Brunner, ${ }^{5,6}$ C. C. W. Lim, ${ }^{7}$ N. Gisin, ${ }^{7}$ and P. G. Kwiat ${ }^{1}$

Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km
B. Hensen,,$^{1,2}$ H. Bernien, ${ }^{1,2, *}$ A.E. Dréau, ${ }^{1,2}$ A. Reiserer, ${ }^{1,2}$ N. Kalb, ${ }^{1,2}$ M.S. Blok, ${ }^{1,2}$ J. Ruitenberg, ${ }^{1,2}$ R.F.L. Vermeulen,,${ }^{1,2}$ R.N. Schouten,,$^{1,2}$ C. Abellán, ${ }^{3}$ W. Amaya, ${ }^{3}$ V. Pruneri, ${ }^{3}$ M.W. Mitchell,,${ }^{3,4}$ M. Markham, ${ }^{5}$ D.J. Twitchen, ${ }^{5}$ D. Elkouss, ${ }^{1}$ S. Wehner, ${ }^{1}$ T.H. Taminiau,,${ }^{1,2}$ and R. Hanson ${ }^{1,2, \dagger}$

- The two measurements must be set independently (locality loophole).
- The choice of the setting must be truly random (freedom-of-choice loophole)
- One should be able to detect all the pairs involved in the experiment or, at least, a sufficiently large fraction of them (detection loophole).


## Furthermore:

(the number of emitted particle must be independent by measurement settings (production rate loophole)
the presence of a coincidence window must not allow in a hidden variable scheme a situation where local setting may change the time at which the local event happens (coincidence loophole)

- an eventual memory of previous measurements must be considered in the statistical analysis since the data can be not-independent and identically distributed (memory loophole).

When all these conditions are satisfied, no room is left for local realistic hidden variable theories.
> the two measurements clearly space like separated (keeping in to account delays in transmission etc.) of setting choj and measurements is done. Thus, locality loophole is overcome
> the use of high detection efficiency TES together with non-maximally entangled states (as suggested by Eberha allowed a detection loophole free experiment.

- Independent random number generators based on laser phase diffusion guarantee the elimination of fredom- ofchoice loophole (except, as mentioned, in presence of superdetermininsm or other hypotheses that 年 definition, do not allow a test through Bell inequalities).
- A perfect random choice of settings, as realized, does not permit production rate loophole.
- The use of a pulsed source eliminates coincidence loophole.
- An involved statistical analysis does not leave room for memory loophole.


## Is determinism excluded?

-Non local HVT (de Broglie Bohm theory, Nelson stocastic model, ...)

- Determinism at Planck scale [t' Hooft]

A physical system can evolve deterministically at Planck scale, but a probabilistic theory can derive at larger spatial scales due to loss of information (a quantum state is defined as a class of equivalence of states all having the same future). Nowadays Bell ineq
degrees of freedom.
[Elze, Biro', Blasone et al., ...]

Let us consider a discrete system with four states $e_{1} ; e_{2} ; e_{3} ;$ $e_{4}$ whose deterministic evolution is after every step

$$
e_{1} \rightarrow e_{2}, e_{2} \rightarrow e_{1}, e_{3} \rightarrow e_{3}, e_{4} \rightarrow e_{1}
$$

$U=\left(\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$

After a short lapse of time only the states $e_{1} ; e_{2} ; e_{3}$ survive. Thus one can simply erase the state $e_{4}$ and considering $\epsilon$ $e_{3}$ as the "quantum" system with a unitary evolution described by the upper $3 \times 3$ part of $U$

This system may therefore be described in three equivalence classes:
$E_{1}=\left\{e_{1}\right\}, E_{2}=\left\{e_{2}, e_{4}\right\}, E_{3}=\left\{e_{3}\right\}$,
with unitary evolution operator

$$
U^{\prime}=e^{-i H}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

This simple model shows how, if information is allowed to dissipate, one has to define quantum states as equivalence classes of states, where two states are equivalent if, some, time in the future, they evolve into one and the same sta

## Quantum Technologies

## Quantum INFORMATION



From bit ( 0,1 ), to quantum-bit (qubit) $|0>| 1>$

## $\mathbf{a}|0>+b| 1>$

Many particles: entanglement



## quantum parallelism

$$
a_{1}\left|00 \ldots 0>+\ldots+a_{N}\right| 1 \ldots 1>
$$

$$
\begin{aligned}
& \mathbf{O}\left[a_{1} \mid\right. 0 \ldots .0> \\
& a_{1} \mathbf{O} \ldots a_{2} \mid 0 \ldots 0 \\
& \hline
\end{aligned}
$$




Factorization $(100=5 \times 5 \times 2 \times 2)$ :
Is a NP problem
10 GHz processor for a 100 digits number
$10^{100 / 2}: 10^{10}=10^{40}$ seconds (universe life time $=10^{18} \mathrm{~s}$ )

Cryptographic codes are sicure?


No with a quantum PC!!!!


## ELEMENTS OF A QUANTUM COMPUTER

Different logical gates are necessary, both operating on single qubits and on more qubits (two).
An interaction among different qubits is needed for realising multiqubits gates.

Single qubits gates + controlled not are a universal set of they allow any possible operation

Controlled not
$|0>|0>\rightarrow|$
$|0>|1>\rightarrow| 0>$
$|1>|0>\rightarrow| 1>$
$|1>|1>\rightarrow| 1>$


## - HOW will quantum pe be?

- Ion Trap
qubit: hyperfine state, phonons
evoluzione: laser. Interazione con fononi


Results: C-not [Wineland et al.]
2 qubits Deutsch-Josza alghoritm

- NIMIS
qubit: nucleus spin

Results: Grover search algorithm elements.
Factorization $\mathrm{N}=15$ |Vandersypen et al., Nature (01)]


- Solid State: Quantum dots, Superconductors etc.
- qubit representation: charge
evolution: electrostatic gates, Coulomb interaction
problems: decoherence time?


## Quantum Dots



Controlled Rotation (equivalent to C-not) [X.Li et al., Science (03)]

Josephson junction


## - QED cavity

photon - atom interaction in cavity
qubit : atomic state, EM field (micro-wave, optical)


Results: conditional phase shift [Turchette et al., Haroche et al. ]

- Lincar optices QC

Results: Probabilistic C-not [Pittmann et al., Phys. Rev. A 68, 032316 (2003)]


## Quantum communication



QKD


key $=0100011101110011110000$ $+$
Message $=1110101010101010011111$
-Single quantum state cannot be determined
$\mathrm{a}|0>+\mathrm{b}| 1>$

- no quanstum xerox


$$
\begin{aligned}
& a|0\rangle+b \mid 1> \\
& a|0>+b| 1> \\
& \ldots \ldots . . . . \\
& a|0>+b| 1>
\end{aligned}
$$

- Eavesdropping adds noise


## No cloning theorem

$$
\begin{aligned}
& \text { cloning arbitrary states } \left.\left|\psi_{1}>\right| \psi_{2}\right\rangle \\
& \left.\mathrm{U}\left|\psi_{0}>\left|\psi_{1}>\rightarrow\right| \psi_{1}>\right| \psi_{1}\right\rangle \\
& \mathrm{U}\left|\psi_{0}>\left|\psi_{2}>\rightarrow\right| \psi_{2}>\right| \psi_{2}> \\
& <\psi_{1}\left|\psi_{2}\right\rangle=\left|<\psi_{1}\right| \psi_{2}>\left.\right|^{2} \\
& \rightarrow \quad<\psi_{1}\left|\psi_{2}\right\rangle=0 \quad \text { or } \quad<\psi_{1}\left|\psi_{2}\right\rangle=1
\end{aligned}
$$

## Open space QKD



## Over140 km (Tenerife-La Palma)

- Violation of Bell inequality, $\mathrm{S}=2.508 \pm 0.037$
- BB84
( $<\mathrm{n}>=0.27$ signal, $<\mathrm{n}>=0.39$ decoy states)


## Rate: 28 bit/s

QBER = 6.77 \%




## Fiber communication



Over 200 km in telecom fibre

- Some groups are selling plug and play QKD systems.



## Id Quantique



## Teleportation



Teleportation is a protocol where an unknown state is measured in a
laboratory (Alice) together with a member of an entangled state; then, by applying a unitary operation on the other member of the entangled
state according to the result of this measurement (communicated by a classical channel) it is reconstructed in the second lab


$10^{\wedge} 12$ cold atoms


## Quantum Imaging


nature
 DI RICERCA
MEROLOGICA

## Plane Wave Pump

Two-Mode Entangled State (squeezed vacuum)
Two-Mode Photon number correlation

$$
\left|\psi_{\mathbf{q}}\right\rangle=\exp \left(-z a_{1} a_{2}+h . c\right)|0\rangle=\sum_{n=0}^{\infty} c_{n}(\mathbf{q})\left|n_{\mathbf{q}}\right\rangle\left|n_{-\mathbf{q}}\right\rangle \quad \square \quad N_{s}\left(\mathbf{x}_{1}\right)=N_{i}\left(-\mathbf{x}_{1}\right)
$$




## Quantum Radar




## Bibliografia, articoli di rassegna:

- Diseguaglianze Bell : M.G. Physics Reports 413/6 (2005) 319; arXiv:quant-ph1 0 J01071
- Interpretazioni MQ: M.G. Adv. Sci. Lett. 3, 249 (2010); arXiv:1002.0990
- QKD : N.Gisin, arXiv:quant-ph/0101098
- Quantum Imaging: M.G. arXiv:1601.06066
- Quantum Computation: D.Simon et al, Int. J. Quant. Inf.12, (2014) 1430004

