

Pier Stanislao Paolucci WaveScalES coordinator the APE lab - INFN Roma

Brain Research: Scientific and Translational

Novel experimental techniques permit a quantitative exploration of the Brain Architecture

Understanding the Brain, at different levels of abstraction. Since ever, one of the greatest intellectual ambitions.

A quantitative approach is emerging.

Europe, brain disorders and trauma cost: 798 billion € /year Increasing, due to the progressive population

Possible therapies from better understanding

aging

Computational Neuroscience: an Emerging Quantitative Discipline

Novel Brain Experimental Techniques, multi-modal High Spatial and Temporal Definition

Simulations on Massive Parallel Computers, Robots, Neuromorphic platforms

Computational Neuroscience: a kingdom for physics

Theoretical Models: Long-Range and Short Range Connectome (architecture of connections), Dynamic laws for Neuron Membrane Potential and Currents and Synaptic Plasticity (learning), Consciousness Theories

The Human Brain Project - Intro

☐ Planned European fund. 500 MEuro, Oct 2013 – 2023 ☐ Original Consortium: 112 research institutes ☐ Ramp up phase: Oct 2013 – March 2016 ☐ Spring 2015 (also in response to criticism during first-years ramp-up phase): ☐ Competitive call for new scientific proposals/partners (evaluation by external reviewers) ☐ INFN leads the WaveScalES proposal, 4 proposals selected among 57 submitted ☐ HBP Commitment: before 2018 define transformation into legal entity ☐ National Stakeholders board – will be proportional to national investments ☐ National /Regional Partnering Projects ☐ Scientific Board (presently, 13 + 10 members) ☐ Periodic (bi-annual) plan revision, new competitive calls, additional partners First HBP operational phase, April 2016-March 2018 ☐ WaveScalES starts April 2016, 1 MEuro/year, if good results, until 2023 ☐ 5 senior INFN research positions funded by WaveScalES ☐ Discussion of next "WaveScalES HBP budget" in 2018

Slow Waves and Perturbations

During deep-sleep and anesthesia t complexity mode:	he cortex moves in a low-
☐ Collective oscillations, ~ @ 1Hz,	between two states:
☐Down state: neurons nearly	silent (firing @ few Hz)
☐Up state: neurons active (firi hundreds ms, then inhibition down-state	•
Local oscillation phase -> slow-w cortical surface (planar, spirals,	
Perturbative approach:	
☐ Localized spatio-temporal impul	se
☐ Measure the impulse response	
☐ Quantification of consciousness disease/trauma, forecast of eme	•

References:

	ut the proposal of measurable observables about consciousness and integration/differentiation and macro/scale nectivity
	Casali et al., (2013) "A Theoretically Based Index of Consciousness Independent of Sensory Processing and Behavior" Science Translational Medicine
	G. Deco, G. Tononi, et al., (2015) "Rethinking segregation and integration: contributions of whole-brain modelling" Nature Reviews Neuroscience
Abo	ut Consciousness: example of system of axiomes / postulates focusing on a balance of integration and differentiation
	G. Tononi (2015) "Integrated Information Theory" Scholarpedia
	G. Tononi and C. Koch (2015) "Consciousness: here, there and everywhere" Philos. Trans.
	Supporting mathematical framework
	Balduzzi, Tononi (2009) "Integrated Information in Discrete Dynamical Systems: Motivation and Theoretical Framework" PLoS Computational Biology
	☐ Balduzzi, Tononi (2009) "Qualia: The Geometry of Integrated Information"
Abo	ut meso-scale cortical connectivity models
	Schnepel P, et al. (2015) "Physiology and impact of horizontal connections in rat neocortex" Cerebral Cortex
	T.C. Potjans and M. Diesmann (2014) "The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model", Cerebral Cortex
Abo	ut pioneering large scale modeling experiments of the thalamo-cortical system
	Modha, S. D., & al., (2011) "Cognitive Computing", Communications of the ACM,
	E. M. Izhikevich, G. M. Edelman, (2008) "Large-scale model of mammalian thalamocortical systems" PNAS
Abo	ut Slow Waves
	Destexhe, A., & Contreras, D. (2011)." The Fine Structure of Slow-Wave Sleep Oscillations: from Single Neurons to Large Networks." Sleep and Anesthesia
	Timofeev, I., & Chauvette, S. (2011). "Thalamocortical Oscillations: Local Control of EEG Slow Waves." Current Topics in Medicinal Chemistry,
Abo	ut DPSNN, the large scale neural simulator developed by the APE lab of INFN in cooperation with ISS
	P.S. Paolucci, et al., (2015) "Dynamic Many-process Applications on Many-tile Embedded Systems and HPC Clusters: the EURETILE programming environment and execution platforms", Journal of Systems Architecture
	P.S. Paolucci, et al. (2015) "Impact of exponential long range and Gaussian short range lateral connectivity on the distributed simulation of neural networks including up to 30 billion synapses " arXiv:1512.05264
	P.S. Paolucci, et al (2013) "Distributed simulation of polychronous and plastic spiking neural networks: strong and weak scaling of a representative mini-application benchmark executed on a small-scale commodity cluster". arXiv:1310.8478
	M. Mattia, P. Del Giudice (2000) "Efficient Event-Driven Simulation of Large Networks of Spiking Neurons and Dynamical Synapses. Neural Computation"

WaveScalES in HBP - Summary

☐ Experimental WaveScalES partners (will) measure brain Slow Waves during deep-sleep and anaesthesia, and during the transition to consciousness, including: ☐ non invasive techniques on human: high-def. electroencephalographic response to trans-cranial magnetic stimulations □electro-physiological response to in-vitro/in-vivo opto-pharmacologic stimulation of murine models ☐ INFN in WaveScalES — mainly in collab. with ISS Roma □ large scale parallel/distributed simulation of Slow Waves and perturbation responses

WaveScalES measures: from the human bedside downto the murine slice.

TMS/EEG to assess the changes in cortical connectivity and complexity in physiological and pathological conditions;

Intracortical single-pulse electrical stimulations (SPES) and stereo-EEG recordings in combination with scalp hd-EEG to link slow-wave dynamics to overall network connectivity and complexity.

Electrical / optical stimulations / recordings in brain (slices) to study the effects of (opto)-pharmacological manipulations on bistability, connectivity and complexity.

WaveScalES: Research Tasks

Understand multiscale brain exploiting Slow-Wave Activity (SWA) as a Rosetta stone. Five Tasks:

- Slow-wave activity changes during sleep/anesthesia (leader: ISS Roma: Mattia, Del Giudice)
- Slow-wave and complexity: from the micro-scale to the bedside (leader: UniMi: Massimini)
- Slow-wave activity in murine transgenic models of neurological disease
- 4. Modulation of slow-wave activity with opto-pharmacology
- 5. Slow wave simulation platforms (leader: INFN)

INFN (with ISS): Large-scale spiking simulations (hundreds of billions synapses) distributed over (tens of) thousands of MPI processes, including columnar, areal and inter-areal connectivity models.

Computational objectives: match, explain and predict experimental observations.

Improve simulators / HPC interconnects

Pier Stanislao Paolucci – parallel computing CV

Since 1984, member of APE massive parallel comp. lab, INFN Roma led by Nicola Cabibbo, Giorgio Parisi
Inventor/developer of parallelization algorithms, parallel hardware architectures, system software tools, applied to:
☐ QCD, multidim. FFT, meteorology (cubed-sphere), synthetic aperture radar, oil exploration, acoustic arrays, digital signal processing, multiprocessor systems-on-chip,, large scale neural networks
2010-2015 Coordinator, European FP7 Project EURETILE, 5M€
2006-2009 Coordinator, European FP6 Project SHAPES, 9M€
2000-2010 Chief Technical Officer, Atmel Roma design center (NASDAQ: ATML), 4 year tech. tranf. detachment, then part-time researcher until 2010, then back to INFN (full-time researcher)
☐ US patent 6,766,439, US patent 7,437,540
2000-2006 Coordinator, Eureka Project DIAM,
1997-2000 Principal Investigator, ESPRIT European proj. mAgic-FPU

WaveScalES partners/key-persons

- 1) INFN, Istituto Nazionale di Fisica Nucleare, APE Parallel Computing Lab, Roma, Italy
- 2) Consorci Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain – **Murine electro-physiology**
- 3) Università degli Studi di Milano, Italy **Measures in humans**
- 4) Fundació Institut de Bioenginyeria de Catalunya, Spain optopharmacological perturbations
- 5) Istituto Superiore di Sanità, Italy theoretical models

Pier Stanislao Paolucci

Piero Vicini

Maria Victoria Sanchez-Vives

Julia Weinert

Marcello Massimini

Mario Rosanova

Pau Gorostiza

Miquel Bosch

Maurizio Mattia

Paolo Del Giudice

Development of Distributed Plastic Spiking Neural Net Simulator in INFN-

INFN coordinated EURETILE(2010 - 2015) FP7 project ☐ Investigation of future generations of distributed/parallel computers ☐ Focus on software/hardware scalability on many core systems ☐ Start of DPSNN-STDP code development as a source of requirements and architectural inspiration for extreme parallel computing ☐ The brain consumes < 50 W computations. A high abstraction simulator of its computations would require >> 50 MW on present generation HPC INFN third party of ISS Roma in CORTICONIC (2013 – 2016) FP7 project ☐ Identify computational principles of the cerebral cortex ☐ First comparison with in-vivo/in-vitro experimental results ☐ DPSNN improved for CORTICONIC simulations (support of more realistic biological models) importing models from ISS Perseo scalar simulator ☐ DPSNN simulator key benchmark in EXANEST (2016-2018) FET Project (INFN, Piero Vicini) – good overlap and development potential for APE lab

Strong Scaling of our simulator, measured up to 1024 cores, 20 Gsynapses

Strong Scaling of DPSNN on Galileo, July 2015 elapsed sec / (simulated sec * total syn * firing rate)

P.S. Paolucci, et. al (2015) arXiv:1512.05264

(very small scale example of) neural net simulation

- ☐ 200 inhibitory neurons
- 800 excitatory neurons
- Time resolution: 1ms
 - ☐ (horizontal axis)
- Each dot in the rastergram represents an individual spike
- The evolution of the membrane potential of individual neurons is simulated
- The evolution of individual synaptic strength is computed (not shown in the picture)
- individual synaptic delays are taken into account
- ☐ Individual connections and neural types can be programmed

Image: John A Beal CC-BY license. 2005 Louisiana State Univ.

Examples of recent experimental development: White Matter Long Range Connectome

Year 2015 – White matter mapping, DTI - fiber tractography

₡(2009) Mark Dow

Year 1909 -Brodmann Cortical Areas Defined

Experimental techniques... an ample room for INFN contributions

A few examples of novel (last ten years) techniques that are transforming brain research in a quantitative discipline:

☐ Connectome by DTI-Fiber tractography: measure of the (probability of) longrange connections among brain areas (white matter...) opto-genetic/opto-pharmacology: real-time visualization of neuro-synaptic activity and short-range connection (probability) ☐ High definition Electro Encephalography and Multi-unit Electrode Arrays: hundreds of electro-physiological acquisition/stimulation channels ☐ Functional Magnetic Resonance Imaging (areas vs. tasks correlation) ☐ Measure of synaptic STDP (Spiking Time Dependent Plasticity): understanding time-dependent causal/anti-causal learning and temporal arrow ☐ Computationally efficient models of neural activity/spiking (20 arithmetic operations / (neuron * simulated ms); Parallel/distributed computing ☐ Quantitative Complexity/Consciousness Indexes/Theories ...ample room for improvement, e.g. number of acquisition channels, spatial / temporal resolution, (and capacity to manage large teams of researchers Possible INFN contribution on experimental methods

INFN APE lab

Te	am (10 people):
	(staff, Roma 1):
	Piero Vicini, Pier Stanislao Paolucci, Alessandro Lonardo
	(art. 36, Roma 2):
	☐ Roberto Ammendola
	(Temporary positions, mainly funded by European Projects, Roma 1)
	Andrea Biagioni, Ottorino Frezza, Francesca Lo Cicero, Michele Martinelli, Elena Pastorelli, Francesco Simula
	☐ Long term brain research would benefit from a long term perspective for research personnel. Investment in know-how (personnel) should be secured
	Created in 1984 by Nicola Cabibbo & Giorgio Parisi Since then research & development of parallelization algorithms, system
_	software and hardware architectures for numerical simulations /digital
	signal processing / HPC

Conclusions

 Brain: emergence of a quantitative discipline, scientific and translational impact
Novel experimental methodologies, Multi-scale Theories, Computational Neuroscience
WaveScalES in Human Brain Project
Combines experiments, theory and simulations
■ Several opportunities for INFN to be exploredalso about the experimenta measures/treatment techniques
Long term brain research in INFN will benefit from a long term perspective. Investment in know-how (INFN research personnel) should be secured. Adequate computational resources needed. Investment (from overhead, in kind and support of national projects) will be key to play a key role in the HBP national stakeholders board.
Opportunity for Regional/National HBP Partnering Projects
☐ Strong collaboration with ISS (Del Giudice, Mattia), Brain Simulation a key benchmark also in EXANEST FET Project (INFN, Vicini) future interconnects/storage, strategic overlap exists
 Didactic/employment opportunity: complex system numerical/theoretical physics