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What is Quantum Information?

Information Theory

⇔

Quantum Mechanics

Merging two big XXth century revolutions:
information theory (Shannon, Turing) and Quantum Mechanics.
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Examples of applications

Quantum computer Quantum cryptography

Quantum metrology
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Esempi di applicazioni
Quantum sensing Quantum imaging

Quantum simulation
Quantum random number

generation
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But...

...be aware of fake!
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Superposition principle

I Physical states are representes as vectors |ψ〉

I Superposition principle: if |ψ1〉 and |ψ2〉 are physical states,
any linear combination is a physical state:

|Ψ〉 = a|ψ1〉+ b|ψ2〉 a, b ∈ C

I From classical bit (two orthogonal states |0〉 and |1〉) to
quantum-bit , or qubit:

|ψ〉 = α|0〉+ β|1〉 α, β ∈ C , |α|2 + |β|2 = 1

I indistinguishability⇒ INTERFERENCE!
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State superposition

Example 1: photons on a semi-reflective mirror (beam splitter)
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State superposition

Example 1: photons on a semi-reflective mirror (beam splitter)

|0〉

|1〉
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State superposition

Example 1: photons on a semi-reflective mirror (beam splitter)

1√
2
(|0〉+ |1〉)
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State superposition

Example 2: two-slit experiment
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State superposition

Example 3: Schrödinger cat

|ψ〉 =
1√
2

(|live〉+ |dead〉)
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State superposition

up to 6910 AMU, 430 atoms

Pag. 12 Quantum interference of large organic molecules, Nature Communication 2, 263 (2011)
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Misurement and no-cloning

I The measurement (in general) perturbs quantum states

I The output of a measurement is probabilistic (if the state is
not an eigenstate of the observable)

I Impossibility of perfect cloning: quantum copy-machine is
not physical

@U | U|ψ〉A → |ψ〉A|ψ〉B ∀|ψ〉
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Uncertainty principle

I Bound on the precision of
non-commuting observables:
Heisenberg uncertainty
principle

∆x∆p ≥ ~
2

I The lower is the uncertainty on the position, the larger is
the uncertainty on the momentum (and viceversa)
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QKD principles

The best method to encrypt a message is the One-Time-Pad
(OTP) protocol: for a n-bit message, a n-bit secure key is
needed

Quantum key distribution (QKD) allows two users to exchange
random and secret keys
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QKD in a nutshell

BB84 protocol
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Secret key rate

Basic tools:
I two non-commuting basis
I no-cloning theorem
I any measurement (generally)

perturbs the systems

⇒ Eve detection!

Secret key rate:
r = 1− 2h2(Q)

with

Q = QBER h2(Q) = −Q log2(Q)− (1− Q) log2(1− Q)

If Eve is gaining information on the key, the key is discarded.
Eve has no information on the secret message
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QKD in the lab

QKD system for
BB84 protocol

Free-space QKD
prototype
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Aligment-free OAM QKD: 210m free space link

Hybrid qubit: α|L〉π ⊗ |r〉O + β|R〉π ⊗ |l〉O
Rotaton-invariant states!

Pag. 20 G. Vallone, et al., Phys. Rev. Lett. 113, 060503 (2014)
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Gain and QBER
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The data show 10 minutes of acquisition. Dashed lines
represent mean values. QBER and gain fluctuations from block
to block are due to transmission fluctuation caused by the
channel turbulence and to the finite size of the blocks.
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Satellite quantum communication

I Source on satellite simulated by a CCR
CCR: Corner-Cube Retroreflector

I Source (Alice) need to be at the single
photon level

I Short pulses necessary for background
rejection: qubit interleaving strong SLR
pulses

Pag. 22 G. Vallone, et al., Experimental Satellite Quantum Communication, Phys. Rev. Lett. (in press)
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Single passage of LARETS

Orbit height 690 km - spherical brass body
24 cm in diameter, 23 kg mass,
60 Metallic coated Corner-Cube Retroreflectors

Apr 10th, 2014, start 4:40 am CEST
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Detection of four polarization states received from satellite
10 s windows: arrival time within 0.5ns from predictions
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Commercial QKD

First commercial example of security protocol based on
Quantum Mechanics

ID Quantique (CH) MagiQ (US) Quintessence (AU)

SeQurenet (FR) Toshiba (UK)

Pag. 24



Quantum Mechanics QKD QRNG Bell Entanglement Conclusions

Summary

1 Quantum Mechanics

2 Quantum Key Distribution

3 Quantum Random Number Generators

4 Entanglement and Bell inequalities

5 Protocols exploiting entanglement
Teleportation
“Device Independent” protocols

6 Conclusions

Pag. 25



Quantum Mechanics QKD QRNG Bell Entanglement Conclusions

Random number in everyday life

I RANDOM NUMBERS are
needed to encrypt all digital
communications (email, social
networks)

I All classical security protocols
used in e-commerce or credit
card are based on RANDOM
NUMBERS
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Quantum Random Number Generators (QRNG)

I intrinsic randomness of quantum
measurements

I The output of the measurement
cannot be predicted (even if the
initial state is perfectly known)

I Randomness is not due to
ignorance on the initial conditions
(like coin tossing)

How to distinguish

|ψ〉 =
1√
2

(|H〉+ |V〉) (quantum randomness)

from

ρ =
1
2
|H〉〈H|+ 1

2
|V〉〈V| (classical randomness)?

Pag. 27 G. Vallone, D. Marangon, M. Tomasin, P. Villoresi, Phys. Rev. A 90, 052327 (2014)
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QRNG certified by the uncertainty principle

For mutually unbiased basis Z and X in d dimensions, the Entropic
Uncertainty Principle is:

Hmin(Z|E)ρ + Hmax(X|B)ρ ≥ log2 d

Base Z : {|H〉/|V〉}
Random bits

Base X : {|+〉/|−〉}
Randomness
certification

pguess(Z|E) ≤ 1
d

(
∑

x

√
px)

2

Pag. 28 G. Vallone, D. Marangon, M. Tomasin, P. Villoresi, Phys. Rev. A 90, 052327 (2014)
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What is Entanglement?

Correlation and superposition. In Schrödinger word:

"the characteristic trait of quantum mechanics"

|Ψ〉 =
1√
2

(|H〉A|V〉B − |V〉A|H〉B) =
1√
2

(| ↑〉A| ↓〉B − | ↓〉A| ↑〉B)

6= |ϕ1〉A ⊗ |χ2〉B

A B

Correlations that cannot be obtained by classical systems!
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EPR paradox: the beginning...

Einstein, Podolsky e Rosen (EPR), 1935:

1 Reality: if, without disturbing a system a physical quantità
can be predicted, then an element of reality is associated
to such quantity;

2 Completeness: every element of reality must be
contained in the physical theory;

3 Locality: any action on a system A (Alice) cannot change
the physical reality of a system B (Bob) spatially separated.
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The "paradox"

I EPR aim was to demonstrate that Quantum Mechanics is
NOT a complete theory.

I The “EPR paradox” is based on entangled states:

|Ψ−〉A,B =
1√
2

(|H〉A|V〉B − |V〉A|H〉B)

I If Alice (on the first particle) and Bob (on the second
particle) measure the polarization (or spin) in the same
direction the obtain always opposite results.

Hypotesis: Locality and Realism
⇓�� ��EPR paradox: QM is not complete!
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Local hidden variable model

Does an alternative model exist?

λ λ

λ : Hidden variable (real and local)

Correlation: 〈AiBj〉 = p(Ai = Bj)− p(Ai 6= Bj)
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Bell Inequality

I Bell inequality: for any local hidden variable theory it holds:

SCH ≡ |〈A1B1〉+ 〈A2B1〉+ 〈A1B2〉 − 〈A2B2〉| ≤ 2

I The inequality is violated by a
(singlet) entangled state with A1,
A2, B1 and B2 chosen as in figure:

A2 A1

B1 B2

Quantum Mechanics predicts:

〈SCH〉entangled state = 2
√

2 > 2
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Conseguences

I It is not possible to describe nature with a local hidden
variable theory

I Neither the particle "knows" in advance the output of the
measurement

I Loopholes...
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How entanglement can be generated?

Parametric down-conversion (probabilistic effect)

#1 #2

Cono H
(da #1)

Cono V
(da #2)

Cristalli 
nonlineari

Laser
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What is the measured value of SCH?

In the lab:

〈SCH〉exp = 2.80± 0.04 > 2 , 2
√

2 ' 2.8284
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Quantum Teleportation

Like Star Trek?

almost....
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Quantum Teleportation
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Quantum Teleportation of a qubit

IMPORTANT:
Alice does not know the state that must be teleported to Bob.

It is impossible for Alice to copy the qubit state.
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First experimental realization: 1997

Esperimento di Roma Esperimento di Vienna
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Device Independent Protocols

I Bell inequality was introduced to deal with fundamental
problems: the reality and locality of quantum mechanics

I It has been violated in many different experiments
(photons, ions, diamonds, atoms....)

I close to loophole-free violations
I The Bell inequality is now used as a tool to certify

entanglement: device-independent protocols
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Device Independent Protocols

ALICE
X: choice of the measurement
basis
a: output of the measurement

BOB
Y: choice of the measurement
basis
b: output of the measurement

The following probabilities are measured:

P(a, b|X, Y)

If the above probabilities violate a Bell Inequality, entanglement between
Alice and Bob can be proved

Pag. 43
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Device Independent QKD

I In standard QKD system, the security is based on the
working mechanism of the devices

I In Device-Independent QKD, the devices are BLACK
BOXES: no assumption on their functioning

I Key rate related to the violation of the Bell inequality

r = 1− h2(Q)− h2[f (SCH)]

con f (SCH) =
1+
√

(SCH/2)2−1
2 e Q =QBER.

I If the inequality is not violated, a vanishing key rate is
obtained

Pag. 44
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DI-QKD with non-maximally entangled states

I DI protocols requires high detection efficiency in order to
close the detection looholes

I Non-maximally entangled states requires lower threshold
efficiency ηc compared to maximally entangled states

0.0 0.2 0.4 0.6 0.8 1.0
Conc

0.70

0.75

0.80

0.85

Ηc

⇒ Define a protocol with non-maximally entangled states for
DI-QKD

Pag. 45 G. Vallone, A. Dall’Arche, M. Tomasin, P. Villoresi, New J. Phys. 16, 063064 (2014).
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Experimental key rates
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Device Independent QRNG

I Random bit generation rate:

r = − log2

1− log2

1 +

√
2−

S2
CH
4



I Vanishing rate if SCH ≤ 2

Pag. 47 G. Vallone, A. Dall’Arche, M. Tomasin, P. Villoresi, New J. Phys. 16, 063064 (2014).
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Conclusions

I Deep connection between fundamental physics and
applications

I Quantum
communications in
space: towards satellite
quantum network

I QRNG in commercial
devices
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Perspectives

Explore the limits of Quantum Mechanics and quantum
correlations over very long distances
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Research group: QuantumFuture

email: vallone@dei.unipd.it

http://quantumfuture.dei.unipd.it/
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