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Enrico Fermi

E. Fermi, Dimostrazione che in generale un
sistema meccanico è quasi-ergodico. Nuovo
Cimento (1923)

E. Fermi, J. Pasta and S. Ulam, Studies of
nonlinear problems. Los Alamos Report
LA-1940, 978 (1955)
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Fermi, Pasta, Ulam in Los Alamos

Enrico Fermi (1901-1954)
John Pasta (1909-1984) Stanislaw Ulam (1918-1984)

MANIAC I (1952-1957)
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The weakly nonlinear chain model

N equal masses connected by a weakly nonlinear spring

F ' −κ∆q + α∆q2 + β∆q3 + . . .

The system is Hamiltonian

H =

N∑
j=1

[
1

2m
p2
j +

κ

2
(qj − qj+1)2

]
+
α

3

N∑
j=1

(qj−qj+1)3 +
β

4

N∑
j=1

(qj−qj+1)4
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The result expected by Fermi

Equipartition of linear energy in momentum space (k-space)

Qk =
1

N

N−1∑
j=0

qje
−i 2πkj

N , Pk =
1

N

N−1∑
j=0

pje
−i 2πkj

N ,

then
Ek = |Pk|2 + ω2

k|Qk|2 = const

with

ωk = 2 sin

(
πk

N

)
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The Los Alamos report
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The super-recurrence of Tuck and Menzel

Tuck, J. L., Menzel, M. T. (1972), Advances in Mathematics, 9(3), 399-407.
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Following up on the “little discovery”

“Experimental mathematics”

Soliton theory

Theory of integrable PDEs

Hamiltonian Chaos
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Ten years after FPU: solitons in physics

In the limit of long waves (continuum limit 6= thermodynamic limit) FPU
system reduces to the Korteweg-de Vries (KdV) equation:

ηt + ηηx + ε2ηxxx = 0
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Numerical simulations of the KdV

ZK showed, besides recurrence, the formation of train of solitons

Severn river in England during high flood tides

Interaction of these solitons appeared to be elastic
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Discovery of integrability of the KdV

In 1972 Zakharov and Shabat proved integrability of the Nonlinear Schrödinger

equation. After the discovery, many other equations were found to be integrable

(Sine-Gordon, Davey-Stewartson, Kadomtsev-Petviashvili, Toda Lattice, etc.)

... but FPU is not integrable!!
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FPU and Hamiltonian Chaos

KAM theorem (1954)
Given

H(I, θ, ε) = H0(I) + εH1(I, θ),

under the assumption that H0 is sufficiently regular and that∣∣∣∣∂ωi∂Ij

∣∣∣∣ =

∣∣∣∣ ∂2H0

∂Ii∂Ij

∣∣∣∣ 6= 0

if ε� 1, then invariant tori (KAM tori) survive on the surface of constant energy

Chirikov Criterium (Izraielev and Chirikov, 1966): stochasticity due to
frequency overlap

R =
Ωk

ωk+1 − ωk
> 1 (1)

R is resonance overlap parameter, Ωk is the nonlinear frequency
correction (due to self interaction)
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Existence of a critical energy εc for FPU

Picture coming out:

if ε < εc the KAM tori are dominant and the system does not reach equipartition

if ε ≥ εc the system reach equipartition according to statistical mechanics
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Literature and reviews

Some reviews:

Ford, J. ”The Fermi-Pasta-Ulam problem: paradox turns discovery.”
Physics Reports 213.5 (1992): 271-310.

Berman, G. P., and F. M. Izrailev. ”The Fermi-Pasta-Ulam problem:
fifty years of progress.” Chaos (Woodbury, NY) 15.1 (2005): 15104

Carati, A., L. Galgani, and A. Giorgilli. ”The Fermi-Pasta-Ulam
problem as a challenge for the foundations of physics.” Chaos: An
Interdisciplinary Journal of Nonlinear Science 15.1 (2005):
015105-015105.

Weissert, Thomas P. ”The genesis of simulation in dynamics:
pursuing the Fermi-Pasta-Ulam problem.” Springer-Verlag New York,
Inc., 1999.

Gallavotti, G., ed. ”The Fermi-Pasta-Ulam problem: a status report.”
Vol. 728. Springer, 2008.
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Recent numerical work

For small initial energy density two well separated time-scales are present:

metastable

statistical equilibrium
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Numerical simulations (Benettin et al. J Stat Phys 2013)

The first time scale is the one in which FPU behaves essentially as an
integrable system

The second time scale is instead typical of a nonintegrable dynamics
and statistical equilibrium is possible

Toda Lattice simulation FPU simulation
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The wave-wave interaction approach
Work in collaboration with L. Vozella, D. Proment and Y. L’vov

The large time behavior of the chain is ruled by exact resonant interactions

k1 ± k2 ± ....± km = 0

ω(k1)± ω(k2)± ...± ω(km) = 0
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Normal modes

Assuming periodic boundary conditions, we introduce the wave action
variable

ak =
1√
2ωk

(Pk − iωkQk),

with Pk = Q̇k and ωk = 2| sin(πk/N)|

i
da1

dt
= ω1a1 + ε

∑
k2,k3

V1,2,3

(
a2a3δ1,2+3 + 2a∗2a3δ1,3−2 + a∗2a

∗
3δ1,−2−3

)

with the nonlinear parameter and matrix elements given by:

ε = α
√∑

ωk|ak(t = 0)|2, V1,2,3 = −2sign(k1k2k3)
√
ω1ω2ω3

The system is Hamiltonian with H(ak, a
∗
k): idak/dt = ∂H/∂a∗k
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The interaction reppresentation

Introduce the following rotation

a′k(t) = ak(t)e
iωkt,

then

i
da′1
dt

= ε
∑
k2,k3

V1,2,3

(
a′2a
′
3e
i∆Ω(1)tδ1,2+3 + 2a′∗2 a

′
3e
i∆Ω(2)tδ1,3−2+

+ a′∗2 a
′∗
3 e

i∆Ω(3)tδ1,−2−3

)
∆Ω(1) = ω1 − ω2 − ω3

∆Ω(2) = ω1 + ω2 − ω3

∆Ω(3) = ω1 + ω2 + ω3
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Non existence of exact triads interactions for α-FPU

Exact three-wave resonant interactions

k1 ± k2 ± k3 = 0

ω1 ± ω2 ± ω3 = 0

Given
ωk = 2| sin (πk/N) |

it is trivial to show that three-wave resonant interactions are forbidden
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The canonical transformation

H =
∑
k1

ω1|a1|2 + ε
∑

k1,k2,k3

V1,2,3

[
(a∗1a2a3 + a1a

∗
2a
∗
3)δ1,2+3+

+
1

3
(a∗1a

∗
2a
∗
3 + a1a2a3)δ1,−2−3

]
Eliminate the cubic nonlinearity from the Hamiltonian using a canonical
transformation from {ia, a∗} to {ib, b∗}

a1 = b1 + ε
∑
k2,k3

(A
(1)
1,2,3b2b3δ1,2+3 +A

(2)
1,2,3b

∗
2b3δ1,3−2+

+A
(3)
1,2,3b

∗
2b
∗
3δ1,−2−3) +O(ε2)

with A
(1,2,3)
1,2,3 = V1,2,3/(ω1 ± ω2 ± ω3).
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The reduced system

The reduced Hamiltonian

H̃ =
∑
k1

ω1|b1|2 +
1

2
ε2

∑
k1,k2,k3,k4

T1,2,3,4b
∗
1b
∗
2b3b4δ1+2,3+4 +O(ε3)

The equation of motion

i
db1
dt

= ω1b1 + ε2
∑

k2,k3,k4

T1,2,3,4b
∗
2b3b4δ1+2,3+4 +O(ε3),

i.e. a four-wave interaction system
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Four-wave resonant interactions in the α-FPU

Do 4-wave resonant interactions exist in the α-FPU system?

k1 + k2 = k3 + k4

ω1 + ω2 = ω3 + ω4
(2)
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Umklapp (flip-over) scattering

Normal process (N-process) and Umklapp process (U-process).
Example of an Umklapp scattering with N = 32 (kmax = 16),
k1 = 2, k2 = 14, k3 = −14, k4 = 30 → outside the Brillouin zone,
therefore the wave-number is flip-over k′4 = k4 −N = −2
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Four-wave resonant interactions in the α-FPU

k1 + k2 − k3 − k4
N
= 0,

ω1 + ω2 − ω3 − ω4 = 0

It is possible to show that the above system has solutions for integer
values of k:

Trivial solutions: all wave numbers are equal or

k1 = k3, k2 = k4, or k1 = k4, k2 = k3

Nontrivial solutions
{k1, k2,−k1,−k2}

with k1 + k2 = mN/2 and m = 0,±1,±2, ...
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Four-wave resonant interactions in the α-FPU

Four-waves resonant interactions are isolated

No efficient mixing (and thermalization) can be achieved via a
four-wave process
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The reduced Hamiltonian is integrable

H =
∑
k1

ωk1 |bk1 |2 +
1

2

∑
k1

Tk1,k1,k1,k1 |bk1 |2|bk1 |2+

+
∑
k1 6=k2

Tk1,k2,k1,k2 |bk1 |2|bk2 |2+

+
∑
k1

Tk1,N/2−k1,−k1,−N/2+k1b
∗
k1b
∗
N/2−k1b−k1b−N/2+k1

This result was first obtained Henrici and Kappeler in Commun. Math.
Phys. (2008) following some ideas developed by B. Rink in Commun.
Math. Phys. (2006)
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Six-wave interactions in the α-FPU

How to proceed?

perform a canonical transformation to higher order

check for exact resonances at higher order

i
db1
dt

= ω1b1 + ε2
∑

k2,k3,k4

T1,2,3,4b
∗
2b3b4δ1+2,3+4+

+ ε4
∑

W1,2,3,4,5,6b
∗
2b
∗
3b4b5b6δ1+2+3,4+5+6

Resonant conditions:

k1 + k2 + k3 − k4 − k5 − k6
N
= 0

ω1 + ω2 + ω3 − ω4 − ω5 − ω6 = 0,

Non-isolated solutions exist for integer values of k with N = 16, 32, 64
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∑
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Solutions of the six-wave resonant conditions

Trivial solutions: all wave numbers are equal or

k1 = k4, k2 = k5, k3 = k6

Nontrivial symmetric resonances:

{k1, k2, k3,−k1,−k2,−k3},

with k1 + k2 + k3 = mN/2 and m = 0,±1,±2, ...

Nontrivial quasi-symmetric resonances

{k1, k2, k3,−k1,−k2, k3},

with k1 + k2 = mN/2 and m = 0,±1,±2, ...
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Estimation of the equipartition time scale for random
waves

The equipartition is a statistical feature and time scale should be
estimated from a statistical theory

i
db1
dt

= ω1b1 + ε4
∑

W1,2,3,4,5,6b
∗
2b
∗
3b4b5b6δ1+2+3,4+5+6

Introduce the following correlators

〈b∗1b2〉 = n1δk2,k1

〈b∗1b∗2b∗3b4b5b6〉 = J1,2,3,4,5,6δk1+k2+k3,k4+k5+k6
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Estimation of the equipartition time scale for random
waves

The evolution equation for n(k)

∂n(k1)

∂t
= ε4Im

[∑
W1,2,3,4,5,6J1,2,3,4,5,6δk1+k2+k3,k4+k5+k6

]
with

Re [J1,2,3,4,5,6] ∼ ε4W1,2,3,4,5,6

Therefore
∂n(k1)

∂t
∼ ε8

∑
...

and the time of equipartition scales as

teq ∼ 1/ε8
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Estimation of the equipartition time scale for random
waves

The equipartition is a statistical feature and time scale should be
estimated from a statistical theory
The evolution equation for n(k) =< |b(k)|2 >
Random phase approximation
After long calculation

∂n(k)

∂t
∼ ε8

∑
...

and the time of equipartition scales as

teq ∼ 1/ε8
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Numerical simulations

Symplectic integrator (H. Yoshida, 1990 Phys. Lett. A)

Numerical simulations with N=32 modes
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Numerical simulation

Initial condition characterized by ε = 0.012 and 3 modes belonging to a
quartet:
k1 = 7, k2 = 9, k3 = −7, expecting k4 = −9
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Numerical simulations: “short” time scale
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Numerical simulations: four wave interactions
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Numerical simulations: “large” time scales - transition to
chaotic state
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Numerical simulations: thermalization
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Entropy

s(t) =
∑
k

fk log fk with fk =
N − 1

Etot
ωk〈|ak|2〉, Etot =

∑
k

ωk〈|ak|2〉

Miguel Onorato (UNITO) Enrico Fermi and the birth of modern nonlinear physics May 12, 2015 39 / 52



Scaling in time

Miguel Onorato (UNITO) Enrico Fermi and the birth of modern nonlinear physics May 12, 2015 40 / 52



Collapse of entropy curves
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E. Fermi with E. Amaldi in Varenna, 1954
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The Thermodynamic Limit

N →∞, L→∞ with
L

N
= ∆x = const

Then the 4-wave equation of motion becomes:

i
∂b1
∂t

= ω1b1 + ε2
∫
T1,2,3,4b

∗
2b3b4δ1+2,3+4dk2dk3dk4

Exact 4-wave resonant interactions exist and are not isolated.

No need to go to higher order in wave interaction!
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The Wave Kinetic Equation

Look for an evolution equation for the correlator
< b(κi, t)b(κj , t)

∗ >= n(κi, t)δ(κi − κj)
BBGKY hierarchy: need of a clousure

Assume quasi-gaussian approximation (Wick’s decomposition)

∂n1

∂t
= 4πε4

∫
T 2

1,2,3,4n1n2n3n4

(
1

n1
+

1

n2
− 1

n3
− 1

n4

)
δ(∆κ)δ(∆ω)dκ2,3,4

δ(∆κ) = κ1 + κ2 − κ3 − κ4

δ(∆ω) = ω(κ1) + ω(κ2)− ω(κ3)− ω(κ4)
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The Wave Kinetic Equation

Conserved quantities:

E =

∫
ω(κ)n(κ, t)dκ, N =

∫
n(κ, t)dκ, P =

∫
κn(κ, t)dκ (3)

Existence of an H-theorem:

H =

∫
ln(n(κ, t))dκ (4)

dH

dt
≤ 0 (5)
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The Rayleigh-Jeans distribution

dH/dt = 0→ n(k, t) =
T

ω(κ) + µ+ ck

where constants T and µ have the meaning of temperature and chemical
potential.

Miguel Onorato (UNITO) Enrico Fermi and the birth of modern nonlinear physics May 12, 2015 46 / 52



Conclusions

Resonant triads are forbidden; this implies that on the short time
scale three-wave interaction will generate a reversible dynamics

A suitable canonical transformation allows us to look at higher order
interactions in the system which are responsible for longer time scale
dynamics

Four-wave resonant interactions exist; however, we have shown that
each resonant quartet is isolated, preventing the full spread of energy
across the spectrum and thermalization
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Conclusions

The first significant interaction is the six-wave one; on the time scale
of these interactions, one possibly may observed the equipartition
phenomenon

In the thermodynamic limit a wave kinetic equation can be built and
thermodynamic solution can be found analytically
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The End
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Prospectives

Increasing the level of nonlinearity may lead to a different dynamics
because of the presence of quasi-resonances

Nonlinear frequency renormalization, quasi-resonances and its relation
to the stochastic threshold is the subject of current investigation

Numerical simulations are being performed in order to check the time
scales

Thermodynamic limit

Check scaling with ε and N
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The α-FPU and Toda Lattice

H(p, q) =
1

2

N∑
i=1

p2
i +

N∑
i=1

V (qi+1 − qi),

α-FPU model:

V (r) =
r2

2
+ α

r3

3
Toda Lattice (Flaschka 1974, Henon 1974, Manakov, 1974):

V (r) = V0(eλr − 1− λr), V0, λ free parameters

For the particular choice

V0 =
1

4α2
, λ = 2α

the Toda potential is tangent to the FPU one

V (r) =
1

2
r2 + α

1

3
r3 +

1

6
α2r4 + ... (6)
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Fundamental difference between FPU and Toda Lattice

The reduced Hamiltonian

H̃ =
∑
k1

ω1|b1|2 +
1

2
ε2

∑
k1,k2,k3,k4

T1,2,3,4b
∗
1b
∗
2b3b4δ1+2,3+4 +O(ε3)

The equation of motion

i
db1
dt

= ω1b1 + ε2
∑

k2,k3,k4

T1,2,3,4b
∗
2b3b4δ1+2,3+4 +O(ε3)

For the Toda Lattice it is possible to show that the T1,2,3,4 is identically
zero on the resonant manifold. Same result holds for any wave-wave
interaction up to infinity!!

Miguel Onorato (UNITO) Enrico Fermi and the birth of modern nonlinear physics May 12, 2015 52 / 52


	The -FPU problem
	The wave-wave interaction approach
	The thermodynamic limit: the wave kinetic equation
	Conclusions

