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The first “digital computer” in Babylonia about 2400 b.c.

The first “analog computer”: Antikythera for determining the
position of celestial bodies, Crete, about 100 b.c.
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The first programmable computer:
mechanical “difference engine”
Charles Babbage (1791-1871)

was realized by his son after Babagge’s death.



Konrad Zuse’s (1910-1992) relay-driven computer Z3

From the vacuum-tube ENIAC to the IBM Blue Gene
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Pioneers of theoretical computer science:
John von Neumann (1903-1992) and Alan Turing (1912-1954)

Model of a universal Turing machine



RSA encryption: multiplication is easy, factorization is hard.

RSA decryption challenge in 1991:
factorize the following 174-digit number with 576 bits

RSA576 = 18819881292060796383869723946165043980716356

33794173827007633564229888597152346654853190

60606504743045317388011303396716199692321205

734031879550656996221305168759307650257059

= 39807508642406493739712550055038649119906436

2342526708406385189575946388957261768583317

∗ 47277214610743530253622307197304822463291469

5302097116459852171130520711256363590397527

This problem was solved only in 2003 by two mathematicians
in Bonn using very large computer resources.

Only in 2009, when the challenge was no longer active, the
232-digit number RSA768 with 768 bits has finally been
factorized.
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Moore’s law: “Every two years the number of transistors per
area increases by a factor of 2.”

Modern micro chips consist of several billions of transistors,
each about 10−8 m in size. This is already close to the
quantum mechanical limit set by the size of individual atoms.
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Richard Feynman’s vision of 1982

“I’m not happy with all the analyses that go with just the classical
theory, because nature isn’t classical, dammit, and if you want to make a
simulation of nature, you’d better make it quantum mechanical, and by
golly it’s a wonderful problem, because it doesn’t look so easy.”



Deutsch’s universal quantum computer could use Shor’s
algorithm to solve the factorization problem.

David Deutsch Peter Shor

Until today, only 15 = 3 · 5 has been correctly factorized by a
quantum computer, at least in about 50 % of all trials.
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Ion traps as a digital quantum computer?

Franklin Medal 2010: I. Cirac, D. Wineland, P. Zoller



Bose-Einstein condensation in ultra-cold atomic gases

Eric Cornell, Carl Wieman, Wolfgang Ketterle, 1995



Ultra-cold atoms in optical lattices as an analog quantum
simulator for the bosonic Hubbard model

Transition from a superfluid to a Mott insulator

Theodor Hänsch Immanuel Bloch

Can one understand high-Tc superconductivity in this way?
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Theodor Hänsch Immanuel Bloch

Can one understand high-Tc superconductivity in this way?



Outline

A Brief History of Classical Computing

Pioneers of Quantum Computers and Quantum Simulators

Classical and Quantum Simulations of Quantum Spin Systems

From Wilson’s Lattice QCD to Quantum Link Models

Quantum Simulators for Abelian Lattice Gauge Theories

Quantum Simulators for non-Abelian Lattice Gauge Theories

Conclusions



The spin 1
2

quantum Heisenberg model

Quantum spins [Sa
x , S

b
y ] = iδxyεabcS

c
x and their Hamiltonian

H = J
∑

〈xy〉

~Sx · ~Sy

Partition function at inverse temperature β = 1/T

Z = Tr exp(−βH)



The Hubbard Model for doped antiferromagnets

H = −t
∑

〈xy〉

(c†xcy + c†ycx) + U
∑

x

(c†xcx − 1)2, cx =

(
cx↑
cx↓

)

Sign problem of fermionic path integrals

Zf = Tr exp(−βH) =
∑

[n]

Sign[n] exp(−S [n]) , Sign[n] = ±1

Average sign is exponentially small

〈Sign〉 =

∑
[n] Sign[n] exp(−S [n])
∑

[n] exp(−S [n])
=

Zf

Zb
= exp(−βV∆f )



The Hubbard Model for doped antiferromagnets

H = −t
∑

〈xy〉

(c†xcy + c†ycx) + U
∑

x

(c†xcx − 1)2, cx =

(
cx↑
cx↓

)

Sign problem of fermionic path integrals

Zf = Tr exp(−βH) =
∑

[n]

Sign[n] exp(−S [n]) , Sign[n] = ±1

Average sign is exponentially small

〈Sign〉 =

∑
[n] Sign[n] exp(−S [n])
∑

[n] exp(−S [n])
=

Zf

Zb
= exp(−βV∆f )



The Hubbard Model for doped antiferromagnets

H = −t
∑

〈xy〉

(c†xcy + c†ycx) + U
∑

x

(c†xcx − 1)2, cx =

(
cx↑
cx↓

)

Sign problem of fermionic path integrals

Zf = Tr exp(−βH) =
∑

[n]

Sign[n] exp(−S [n]) , Sign[n] = ±1

Average sign is exponentially small

〈Sign〉 =

∑
[n] Sign[n] exp(−S [n])
∑

[n] exp(−S [n])
=

Zf

Zb
= exp(−βV∆f )



The Hubbard Model for doped antiferromagnets

H = −t
∑

〈xy〉

(c†xcy + c†ycx) + U
∑

x

(c†xcx − 1)2, cx =

(
cx↑
cx↓

)

Sign problem of fermionic path integrals

Zf = Tr exp(−βH) =
∑

[n]

Sign[n] exp(−S [n]) , Sign[n] = ±1

Average sign is exponentially small

〈Sign〉 =

∑
[n] Sign[n] exp(−S [n])
∑

[n] exp(−S [n])
=

Zf

Zb
= exp(−βV∆f )



Optical lattice quantum simulation of quantum spin systems

J. Simon, W. S. Bakir, R. Ma, M. E. Tal, P. M. Preis, M. Greiner,
Nature 472 (2011) 307.
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Kenneth Wilson’s lattice QCD describes confinement of quarks
and gluons inside protons und neutrons

and confirms the experimentally measured mass spectrum



Can heavy-ion collision physics or nuclear astrophysics benefit
from quantum simulations in the long run?



Hamiltonian formulation of Wilson’s U(1) lattice gauge theory

U = exp(iA), U† = exp(−iA) ∈ U(1)

r r
x x + î

Ex,i

Ux,i

Electric field operator E

E = −i∂A, [E ,U] = U, [E ,U†] = −U†, [U,U†] = 0

Generator of U(1) gauge transformations

Gx =
∑

i

(Ex−î ,i − Ex ,i ), [H,Gx ] = 0

U(1) gauge invariant Hamiltonian

H =
g2

2

∑

x ,i

E 2
x ,i −

1

2g2

∑

x ,i 6=j

(Ux ,iUx+î ,jU
†
x+ĵ ,i

U†x ,j + h.c.)

operates in an infinite-dimensional Hilbert space per link



U(1) quantum links from spins 1
2

U = S1 + iS2 = S+, U
† = S1− iS2 = S−

r r
x x + î

Ex,i

Ux,i

Electric flux operator E

E = S3, [E ,U] = U, [E ,U†] = −U†, [U,U†] = 2E

Gauss law

Ring-exchange plaquette Hamiltonian

H = J

H = 0

D. Horn, Phys. Lett. B100 (1981) 149
P. Orland, D. Rohrlich, Nucl. Phys. B338 (1990) 647
S. Chandrasekharan, UJW, Nucl. Phys. B492 (1997) 455



Hamiltonian with Rokhsar-Kivelson term

H = −J
[∑

�

(U� + U†�)− λ
∑

�

(U� + U†�)2

]

Phase diagram

1
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D. Banerjee, F.-J. Jiang, P. Widmer, UJW, JSTAT (2013) P12010.



Energy density of charge-anti-charge pair Q = ±2
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“String theory on a chip” with superconducting circuits

D. Marcos, P. Rabl, E. Rico, P. Zoller,
Phys. Rev. Lett. 111 (2013) 110504 (2013).
D. Marcos, P. Widmer, E. Rico, M. Hafezi, P. Rabl, UJW, P. Zoller,
arXiv:1407.6066.



Digital quantum simulation of Kitaev’s toric code
(a Z(2) quantum link model) with trapped ions

• Precisely controllable many-body quantum device, which can
execute a prescribed sequence of quantum gate operations.
• State of simulated system encoded as quantum information.
• Dynamics is represented by a sequence of quantum gates,
following a stroboscopic Trotter decomposition.

A. Y. Kitaev, Ann. Phys. 303 (2003) 2.
B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma, F. Zähringer, P. Schindler, J. T. Barreiro, M.
Rambach, G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt, C. F. Roos, Science 334 (2011) 6052.



U(1) quantum link models can also be simulated
with Rydberg atoms in an optical lattice

• Lasers can excite atoms to high-lying Rydberg states.
• Rydberg atoms are large and have collective interactions.
• Ensemble Rydberg atoms represent qubits at link centers.
• Control atoms at lattice sites ensure the Gauss’ law.

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, P. Zoller, Phys. Rev. Lett. 102 (2009) 170502.
H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, H. P. Büchler, Nat. Phys. 6 (2010) 382.
L. Tagliacozzo, A. Celi, P. Orland, M. Lewenstein, Nature Communications 4 (2013) 2615.
L. Tagliacozzo, A. Celi, A. Zamora, M. Lewenstein, Ann. Phys. 330 (2013) 160.



Hamiltonian for staggered fermions and U(1) quantum links

H = −t
∑

x

[
ψ†xUx ,x+1ψx+1 + h.c.

]
+ m

∑

x

(−1)xψ†xψx +
g2

2

∑

x

E 2
x ,x+1

Ux ,x+1 = bxb
†
x+1, Ex ,x+1 =

1

2

(
b†x+1bx+1 − b†xbx

)

Optical lattice with Bose-Fermi mixture of ultra-cold atoms

b)

F
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4
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◆
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F
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D. Banerjee, M. Dalmonte, M. Müller, E. Rico, P. Stebler, UJW,
P. Zoller, Phys. Rev. Lett. 109 (2012) 175302.



Quantum simulation of the real-time evolution of string
breaking 1 2 3 4 5 6 7x
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U(N) quantum link operators

U ij = S ij
1 +iS ij

2 , U
ij† = S ij

1−iS
ij
2 , i , j ∈ {1, 2, . . . ,N}, [U ij , (U†)kl ] 6= 0

SU(N)L × SU(N)R gauge transformations of a quantum link

[La, Lb] = ifabcL
c , [Ra,Rb] = ifabcR

c , a, b, c ∈ {1, 2, . . . ,N2 − 1}

[La,Rb] = [La,E ] = [Ra,E ] = 0

Infinitesimal gauge transformations of a quantum link

[La,U] = −λaU, [Ra,U] = Uλa, [E ,U] = U

Algebraic structures of U(N) quantum link models

U ij , La, Ra,E , 2N2 + 2(N2−1) + 1 = 4N2−1 SU(2N) generators

R. Brower, S. Chandrasekharan, UJW, Phys. Rev. D60 (1999) 094502



Fermionic rishons at the two ends of a link

{c ix , c j†y } = δxyδij , {c ix , c jy} = {c i†x , c j†y } = 0

Rishon representation of link algebra

r r
x y

cix cjy

Uij

U ij
xy = c ixc

j†
y , L

a
xy = c i†x λ

a
ijc

j
x , R

a
xy = c i†y λ

a
ijc

j
y , Exy =

1

2
(c i†y c iy−c i†x c ix)

Can a “rishon abacus” implemented with ultra-cold atoms be
used as a quantum simulator?



Optical lattice with ultra-cold alkaline-earth atoms
(87Sr or 173Yb) with color encoded in nuclear spin

x x + 1x � 1

�� ++� +

a)

U U
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( (
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x,x+1 i

x
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D. Banerjee, M. Bögli, M. Dalmonte, E. Rico, P. Stebler, UJW, P. Zoller,
Phys. Rev. Lett. 110 (2013) 125303



Expansion of a “fireball” mimicking a hot quark-gluon plasma
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Nuclear Physics from SU(3) QCD

Quarks

Gluon

Baryon

Nucleus

“Nuclear Physics” in an SO(3) lattice gauge theory?

SO(3) "Baryon"

SO(3) "Nucleus"
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1-d SO(3) quantum link model with adjoint triplet-fermions

H = −t
∑

x

[
ψi†
x O

ij
x ,x+1ψ

j
x+1 + h.c.

]
+ m

∑

x

(−1)xψi†
x ψ

i
x

Restoration of chiral symmetry at baryon density nB ≥ 1
2
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M. Dalmonte, E. Rico, D. Banerjee, M. Bögli, P. Stebler, UJW, P. Zoller,
in preparation



Implementation with magnetic atoms (e.g. Cr), whose dipolar
interactions allow spin-spin interactions without superexchange

A. de Paz, A. Sharma, A. Chotia, E. Marechal, J. H. Huckans, P. Pedri,
L. Santos, O. Gorceix, L. Vernac, and B. Laburthe-Tolra,
Phys. Rev. Lett. 111 (2013) 185305.



Analog quantum simulator proposals
H. P. Büchler, M. Hermele, S. D. Huber, M. P. A. Fisher, P. Zoller,
Phys. Rev. Lett. 95 (2005) 040402.
E. Zohar, B. Reznik, Phys. Rev. Lett. 107 (2011) 275301.
E. Zohar, J. I. Cirac, B. Reznik, Phys. Rev. Lett. 109 (2012) 125302;
Phys. Rev. Lett. 110 (2013) 055302; Phys. Rev. Lett. 110 (2013) 125304.
D. Banerjee, M. Dalmonte, M. Müller, E. Rico, P. Stebler, UJW,
P. Zoller, Phys. Rev. Lett. 109 (2012) 175302.
D. Banerjee, M. Bögli, M. Dalmonte, E. Rico, P. Stebler, UJW,
P. Zoller, Phys. Rev. Lett. 110 (2013) 125303

Digital quantum simulator proposals
M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, P. Zoller,
Phys. Rev. Lett. 102 (2009) 170502; Nat. Phys. 6 (2010) 382.
L. Tagliacozzo, A. Celi, P. Orland, M. Lewenstein,
Nature Communications 4 (2013) 2615.
L. Tagliacozzo, A. Celi, A. Zamora, M. Lewenstein,
Ann. Phys. 330 (2013) 160.

Review on quantum simulators for lattice gauge theories

UJW, Annalen der Physik 525 (2013) 777, arXiv:1305.1602.
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Conclusions

• Quantum link models provide an alternative formulation of lattice
gauge theory with a finite-dimensional Hilbert space per link, which
allows implementations with ultra-cold atoms in optical lattices.

• Quantum link models can be formulated with manifestly gauge
invariant degrees of freedom that characterize the realization of the Gauss
law. “Encoding” these degrees of freedom, e.g. in magnetic atoms with
dipolar interactions, offers a new robust way to protect gauge invariance.

• Quantum simulator constructions have already been presented for the
U(1) quantum link model as well as for U(N) and SU(N) quantum link
models with fermionic matter, using ultra-cold Bose-Fermi mixtures or
alkaline-earth atoms.

• This allows the quantum simulation of the real-time evolution of string
breaking as well as the quantum simulation of “nuclear physics” and
dense “quark” matter, at least in a qualitative SO(3) toy model for QCD.

• Accessible effects may include chiral symmetry restoration, baryon
superfluidity, or color superconductivity at high baryon density, as well as
the quantum simulation of “nuclear” collisions.

• The path towards quantum simulation of QCD will be a long one.

However, with a lot of interesting physics along the way.
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