Quantum mechanical simulation of crystaline systems

Roberto Dovesi

Gruppo di Chimica Teorica
Dip. Di Chimica IFM
Università degli Studi di Torino

Why simulation? Is simulation useful?

Does it produce reasonable numbers?
Or can only try to reproduce the experiments?

Connected question: Is simulation expensive?

How many transistors on a chip?

Microprocessor Transistor Counts 1971-2011 \& Moore's Law

Gordon Moore

The number of transistors per chip doubles every 18 months

Performance of HPC

Keith E. Gubbins* and Joshua D. Moore
Ind. Eng. Chem. Res. 2010, 49, 3026-3046

Molecular Modeling of Matter: Impact and Prospects in Engineering

Figure 15. Top supercomputer in world versus the 500th supercomputer based on speed from June 1993 to November 2009 from the TOP500 list (a new lists appear in June and November of each year). Lines are drawn for the eye and serve as an estimate of possible future projections based on the data. (Data used with permission from TOP500 Supercomputing Sites, http://top500.org).

But.....

The evolution of the hardware is always much faster than that of the software.

Parallel computing....

How to fill supercomputers?

Is simulation expensive? The last computer we bought....

Server Supermicro 64 CORE OPTERON euros 6.490 ,00
1 x Chassis $2 \mathrm{U}-6 \times$ SATA/SAS - 1400W
4 x CPU AMD Opteron 16-Core 6272 2,1Ghz 115W
$8 \times$ RAM 8 GB DDR3-1333 ECC Reg. (1GB/core)
1 x Backplane SAS/SATA 6 disks
1 x HDD SATAII 500 GB 7.200 RPM hot-swap
1 x SVGA Matrox G200eW 16MB
2 x LAN interface 1 Gbit
$1 \times$ Management IPMI 2.0
Cheap... but 64 cores- \rightarrow Parallel computing
Much less than most of the experimental equipments
64 cores enough for large calculation........

At the other extreme: SUPERCOMPUTERS

Available, but:
a) They are fragile
b) Not so much standard (compiler, libreries)
c) The software (that is always late with respect to hardware) MUST BE ABLE TO EXPLOIT this huge power

The PRACE Tier-0 Resources

Cray XC30 system - 94,656 cores

CURIE (GENCI, FR)

FERMI (CINECA, IT) BlueGene Q system - 163,840 cores

SUPERMUC (LRZ, DE) IBM System x iDataPlex system- 155,656 cores

MARENOSTRUM (BSC, SP) IBM System x iDataPlex system- 48,448 cores

JUQUEEN (JÜLICH, DE) BlueGene Q system - 458,752 cores

MPPCRYSTAL: strong scaling

Scaling of computational time required for an SCF cycle with the number of processors for two supercells of mesoporous silica MCM-41, with a 6-31G** basis set and PBE functional. The X16 cell contains 9264 atoms and 124096 atomic orbitals, the X24 one 13896 atoms and 186144 atomic orbitals.

Various approaches can be

used for the simulation of solids:

-classical or semi-classical energy expressions

(force-field, electrostatic + repulsion terms);
structural, elastic, dielectric properties of ionic and semi-ionic compounds such as $\mathrm{Al}_{2} \mathrm{O}_{3}$ (corundum) or SiO_{2} (quartz); the only available in the 1960-1980 period; still used for large systems or for a first quick determination. Parametric (then boring parametrization, usually valid for interpolation, much less for extrapolation......).
-MD (molecular dynamics) based on classical mechanics (then on force fields). The only available for, say, more than 30.000 atoms (for example proteins). Temperature effect

Obviously no electronic wavefunction \rightarrow nothing about the related properties

Quantum mechanical
 (based then on the solution of the Schroedinger equation at some level of approximation)

a) ab initio
(no parameters, also indicated as first-principle)
b) semi-empirical
in the quantum-mechanical frame many of the interactions (then of expensive integrals) are approximated with reference to some physical or chemical property. Cheaper than a)

Quantum mechanical, ab initio

I) wavefunction based (Hartree-Fock, Configuration interaction, Coupled Cluster, Moeller Plesset.....).

In short:

The multielectronic problem MUST be tackled through ONE electron wavefunctions: Hartree-Product $>$ Slater Determinant $>$ variational principle $>$ double infinite expansion (basis set and determinants).
Historically, the Molecular or Chemistry approach.
Standard codes since 1960-70 (IBMOL- means IBM first explicit set of atomic wave-functions, 1974, Clementi and Roetti.
Gaussian (Pople) code (1975), and others in the following years.

Quantum mechanical, ab initio
II) Electronic Density based
(a 3 variables problem instead of 3 N variables)
The Hohenberg-Kohn Theorems (1964) originates
the DFT (Density Functional Theory):
LDA, GGA, meta-GGA, «hybrids», range separated......
a sort of medioeval «bestiarium»
because:
the theorems say that the TOTAL ENERGY (a number)
only depends on the density (a function);
however the link between the two is unknown (or known only in limiting cases as for the electron gas). In practice solves an equation very close to the one for the wavefunction.

Here we consider the

QUANTUM MECHANICAL ab initio

approach to the properties of crystalline compounds only crystalline (means: periodic in 1, 23 directions)?
NO!

The same scheme applies to:
a) local defects (say vacancies in silicon)
b) desordered systems (say solid solutions)

The level of the theory:

non relativistic
Schroedinger equation
Born-Hoppeneimer approximation single particle approximation single determinant (Hartree-Fock orDFT)
variational principle
local basis set (LCAO)

An obvious statement:
also the simplest crystalline system is much more complicated than the simplest molecular system:

Accurate studies for the latter in the ' 60
(H_{2}, methane, benzene)

The first ab initio calculations for solids appear in 1979-1980 (diamond)

Hystorically, two separated development lines:

Molecules (or finite systems): HF based, a local basis set, all electron

Solids (infinite in three directions) DFT, plane-waves, pseudopotential.

In the last say 10 years.....intersections...

The simulation at the theoretical chemistry group in Torino

The CRYSTAL code

The CRYSTAL PROJECT:

was formulated in the 1972-76 years by Cesare Pisani, Carla Roetti and Roberto Dovesi, starting from the periodic Hartree Fock schemes proposed in these years by various authors (André, Del Re, Harris, Ladik, Euwema);
first "exercices" with periodic EHT, CNDO, MNDO

Then many other contributions (local and from abroad)

Cesare Pisani

1938-2011

Cesare Pisani died on July 17, 2011, in a mountains accident

Carla Roetti

Carla Roetti graduated in chemistry (1967) from the University of Torino, where she became Associate Professor in Physical Chemistry in 1980.

Throughout her scientific career, she has been one of the leaders of the Theoretical Chemistry Group of the Torino University. For almost forty years (1974-2010) she has been involved with her colleagues in the quantum mechanical ab-initio study of the electronic properties of solids and in the implementation of related algorithms and computer codes, in particular of CRYSTAL.

Her contribution in this respect has been invaluable. Since the release of the first public version of CRYSTAL (1988) and throughout all the subsequent ones, she has played a leading rôle in the maintenance, portability, documentation and testing of the new features of the code, and the support of the users.

Carla Roetti has died on September 7th 2010,
all those who have worked and interacted with her deeply miss her.

The CRYSTAL code

for the investigation of systems periodic in 1D (polymers, nanotubes), 2D (monolayers, slabs), 3D (bulk)

Born in Torino in 1976, public releases in 1988 (QCPE), 1992, 1995, 1998, 2002, 2006, 2009, 2014

Contributions from many researchers from many countries

CRYSTAL88,

 was the first ab initio code publicly available to the scientific community,
last release: 2014.

The basis set

The basis set consists of Bloch Functions (BF) defined in terms of local functions, the atomic orbitals (AO), $\chi_{\mu}(\mathbf{r})$, throughout the entire lattice ($\mathbf{g}=$ lattice vector):

$$
\Phi_{\mu}(\mathbf{r} ; \mathbf{k})=\sum_{\mathbf{g}}^{\infty} \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{g}} \chi_{\mu}\left(\mathbf{r}-\mathbf{R}_{\mu}-\mathbf{g}\right)=\sum_{\mathbf{g}}^{\infty} \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{g}} \chi_{\mu}^{\mathbf{g}}(\mathbf{r})
$$

The local functions are, in turn, a linear combination of n_{G} individually normalized Gaussian type functions (GTF) with constant coefficients d_{j} and exponents α_{j}

$$
\chi_{\mu}\left(\mathbf{r}-\mathbf{R}_{\mu}-\mathbf{g}\right)=\sum_{\mathrm{j}}^{\mathrm{n}_{\mathrm{G}}} \mathrm{~d}_{\mathrm{j}} \mathrm{G}\left(\alpha_{\mathrm{j}} ; \mathbf{r}-\mathbf{R}_{\mu}-\mathbf{g}\right)
$$

Matrix elements of Fock matrix in direct space

$$
\begin{aligned}
& \mathrm{F}_{\mu v}^{\mathbf{g}}=T_{\mu v}^{\mathbf{g}}+Z_{\mu v}^{\mathbf{g}}+\mathrm{C}_{\mu \nu}^{\mathbf{g}}+\mathrm{X}_{\mu \nu}^{\mathbf{g}} \\
& \mathrm{T}_{\mu v}^{\mathbf{g}}=\left\langle\chi_{\mu}^{\mathbf{0}}\right| \hat{\mathrm{T}}\left|\chi_{v}^{\mathbf{g}}\right\rangle \\
& \left.Z_{\mu v}^{\mathbf{g}}=\langle\underset{\mu}{\mathbf{m}}| \underset{\infty}{\mathbf{0}}|\underset{\sim}{\underset{Z}{\mid c}}| \chi_{v}^{\mathbf{g}}\right\rangle \\
& \mathrm{C}_{\mu, v}^{\mathbf{g}}=\sum^{\mathrm{m}} \sum^{\infty} \mathrm{P}_{\lambda, \rho}^{\mathbf{n}} \sum^{\infty}\left[\left(\chi_{\mu}^{\mathbf{0}} \chi_{v}^{\mathbf{g}} \mid \chi_{\lambda}^{\mathbf{h}} \chi_{\rho}^{\mathbf{h}+\mathbf{n}}\right)\right] \quad \text { Coulomb el-el } \\
& X_{\mu, v}^{\mathbf{g}}=\sum_{\lambda, \rho}^{\mathrm{m}} \sum_{\mathbf{n}}^{\infty} P_{\lambda, \rho}^{\mathbf{n}} \sum_{\mathbf{h}}^{\infty}\left[-\frac{1}{2}\left(\chi_{\mu}^{0} \chi_{\lambda}^{\mathbf{h}} \mid \chi_{\nu}^{\mathbf{g}} \chi_{\rho}^{\mathbf{h}+\mathbf{n}}\right)\right] \quad \text { exchange el-el } \\
& \mathrm{P}_{\lambda, \rho}^{\mathbf{n}}=2 \int_{\mathrm{BZ}} \mathrm{~d} \mathbf{k} \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{n}} \sum_{\mathrm{j}} c_{\lambda, \mathrm{j}}(\mathbf{k}) c_{\rho, \mathrm{j}}^{*}(\mathbf{k}) \theta\left[\varepsilon_{\text {Fermi }}-\varepsilon_{\mathrm{j}}(\mathbf{k})\right]
\end{aligned}
$$

Integration in \mathbf{k} space to compute the value of $\varepsilon_{\text {Fermi }}$

Hartree-Fock total energy per unit cell

$\mathrm{E}^{\text {electronic }}=\mathrm{E}^{\text {mono }}+\mathrm{E}^{\text {Coulomb }}+\mathrm{E}^{\text {exchange }}$

$\mathrm{E}^{\text {Coulomb }}=\frac{1}{2} \sum_{\mu, v}^{\mathrm{m}} \sum_{\mathbf{g}}^{\infty} \mathrm{P}_{\mu, v}^{\mathrm{n}} \sum_{\lambda, \rho}^{\mathrm{m}} \sum_{\mathbf{n}}^{\infty} \mathrm{P}_{\lambda, \mathrm{p}}^{\mathrm{n}} \sum_{\mathbf{h}}^{\infty}\left[\left(\chi_{\mu}^{0} \chi_{v}^{\mathrm{g}} \mid \chi_{\lambda}^{\mathbf{h}} \chi_{\rho}^{\mathbf{h}+\mathbf{n}}\right)\right]$
$\mathrm{E}^{\text {exchange }}=\frac{1}{4} \sum_{\mu, v}^{\mathrm{m}} \sum_{\mathbf{g}}^{\infty} \mathrm{P}_{\mu, v}^{\mathbf{g}} \sum_{\lambda, \mathrm{p}}^{\mathrm{m}} \sum_{\mathbf{n}}^{\infty} \mathrm{P}_{\lambda, \mathrm{p}}^{\mathbf{n}} \sum_{\mathrm{h}}^{\infty}\left[\left(\chi_{\mu}^{\mathbf{0}} \chi_{\lambda}^{\mathbf{h}} \mid \chi_{v}^{\mathbf{g}} \chi_{\rho}^{\mathbf{h}+\mathbf{n}}\right)\right]$
The evaluation of HF total energy of a periodic system requires the evaluation of 3 infinite summations ($\mathbf{h}, \mathbf{g}, \mathbf{n}$) that extend to all direct lattice vectors

Schrödinger equation in the BF basis

In the basis of Bloch functions the Hamiltonian matrix is factorized into diagonal blocks of finite size (the number of BFs in the unit cell), each corresponding to a point in reciprocal space.
Schrödinger equation can be solved independently at each \mathbf{k} point.

$$
\mathrm{H}(\mathbf{k}) \mathrm{C}(\mathbf{k})=\mathrm{S}(\mathbf{k}) \mathrm{C}(\mathbf{k}) \mathrm{E}(\mathbf{k})
$$

Symmetry Adapted Crystalline Orbitals

Some \mathbf{k} points are invariant to some point symmetry operations: this property is used to generate Symmetry Adapted Bloch Functions from a set of local functions (AO).

The method, based on the diagonalization of Dirac characters, permits to factor out $\mathrm{H}(\mathbf{k})$ into smaller diagonal blocks:

Hamiltonians

-Restricted and Unrestricted Hartree-Fock Theory

-Total and Spin Density Functional Theory
Local functionals [L] and gradient-corrected [G] exchange-correlation functionals

Exchange functionals
$>$ Slater [L]
$>$ von Barth-Hedin [L]
$>$ Becke '88 [G]
$>$ Perdew-Wang '91 [G]
> Perdew-Burke-Ernzerhof [G]
$>$ Revised PBE for solids [G]
> Second-order GGA expansion for solids [G]
$>$ Wu-Cohen '06 [G]

Correlation functionals
> Vosko-Willk-Nusair (VWN5 parameterization) [L]
$>$ Perdew-Wang [L]
> Perdew-Zunger '81 [L]
$>$ von Barth-Hedin [L]
$>$ Lee-Yang-Parr [G]
$>$ Perdew '86 [G]
> Perdew-Wang '91 [G]
$>$ Perdew-Burke-Ernzerhof [G]
$>$ Revised PBE for solids [G]
$>$ Wilson-Levy '90 [G]

Types of calculations

- Single-point energy calculation
- Automated geometry optimization
- Full geometry optimization (cell parameters and atom coordinates)
- Freezes atoms during optimization
- Constant volume or pressure constrained geometry optimization
- Transition state search
- Harmonic vibrational frequencies
- Frequencies at Γ point
- Phonon dispersion with an efficient supercell approach
- IR intensities through either localized Wannier functions or Berry phase scheme
- Reflectance spectrum
- Exploration of the energy and geometry along selected normal modes
- Anharmonic frequencies for X-H bonds

A few applications.......

Total energy calculation.... Geometry optimization....

CRAMBIN

Crambin is a small seed storage protein from the Abyssinian cabbage. It belongs to thionins. It has 46 aminoacids (642 atoms).

Primary structure:

TTCCPSIVARSNFNVCRLPGTPEALCATYTGCIIIPGATCPGDYAN
Secondary structure:
RANDOM COIL

N -term
β-SHEET
α-HELIX A

Tensorial Properties of Crystals

Second order

Dielectric
Polarizability

Third order

Piezoelectric
First hyperpolarizability

Fourth order

Elastic
 Photoelastic

Second hyperpolarizability

Maximum number of independent elements according to crystal symmetry:
6
18
21

Minimum number of independent elements according to crystal symmetry:
1
1
3

Effect of the Crystal Symmetry on Tensors

Third Order Tensors:

Triclinic
Class 1

Hexagonal
Class 6

Cubic
Classes $\overline{4} 3 m$ and 23
(4) $\left(\begin{array}{llllll}\cdot & \cdot & \cdot & 9 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & c & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & 0\end{array}\right)$

Fourth Order Tensors:

Triclinic
Both classes

Hexagonal
All classes

Cubic

J. F. Nye, Oxford University Press, (1985)

Tensorial Properties Related to Crystal Strain

Elastic Tensor

Piezoelectric Tensor

$$
e_{i v}=\left.\frac{\partial P_{i}}{\partial \epsilon_{v}}\right|_{0}
$$

Photoelastic Tensor

$$
p_{i j v}=\frac{\partial \Delta \epsilon_{i j}^{-1}}{\partial \epsilon_{v}}
$$

Order of the Tensors

Second derivatives of the total energy E with respect to a pair of strains, for a 3D crystal

First derivative of the polarization \mathbf{P} (computed through the Berry phase approach) with respect to the strain

First derivative of the inverse dielectric tensor (difference with respect to the unstrained configuration) with respect to strain

Voigt's notation is used according to $v, u=1, \ldots 6(1=x x, 2=y y, 3=z z, 4=y z, 5=x z, 6=x y)$ and $i, j=1$, $2,3(1=x, 2=y, 3=z)$.

Tensorial Properties Related to Crystal Strain

Elastic Tensor

$$
C_{v u}=\left.\frac{1}{V} \frac{\partial^{2} E}{\partial \epsilon_{v} \partial \epsilon_{u}}\right|_{0}
$$

Geometry definition ELASTCON
[Optional keywords
END
END
Basis set definition END
Comput. Parameters END

Piezoelectric Tensor

$$
e_{i v}=\left.\frac{\partial P_{i}}{\partial \epsilon_{v}}\right|_{0}
$$

Geometry definition PIEZOCON
[Optional keywords
END
END
Basis set definition END
Comput. Parameters END

Photoelastic Tensor

$$
p_{i j v}=\frac{\partial \Delta \epsilon_{i j}^{-1}}{\partial \epsilon_{v}}
$$

Geometry definition PHOTOELA
[Optional keywords] END
END
Basis set definition END
Comput. Parameters END

CRYSTAL14: Elastic Properties

Pyrope- $-\mathrm{Mg}_{3} \mathrm{Al}_{2}\left(\mathrm{SiO}_{4}\right)_{3}$

Table 1 Elastic constants $C_{v u}(\mathrm{GPa})$ and adiabatic bulk modulus $K_{S}(\mathrm{GPa})$ of the six silicate garnet end-members here considered. Present computed values are compared with previously measured experimental (above the horizontal line) and simulated (below lines) data.

		C_{11}	C_{12}	C_{44}	K_{S}
Pyr	Isaak et al. (1976)	287	105	92	166
	Bonczar et al. (1977)	292	106	92	168
	Leitner et al. (1980)	295	117	90	177
	O'Neill et al. (1989)	296	111	92	173
	O'Neill et al. (1991)	298	110	93	172
	Sinogeikin et al. (2000)	297	108	93	171
	Lu et al. (2013)	291	107	92	168
	Pavese (1999)	298	113	93	174
	Winkler et al. (1999)	339	132	115	201
	Mittal et al.(2001)	314	116	91	182
	This study	296	109	89	171

A. Erba, A. Mahmoud, R. Orlando and R. Dovesi, Phys. Chem. Minerals (2013) DOI 10.1007/s00269-013-0630-4

CRYSTAL14: Elastic Properties

Elastic Anisotropy

CRYSTAL14: Piezoelectric and Dielectric Properties

TABLE V: Direct and converse piezoelectric constants of the rhombohedral phase of BaTiO_{3}. as computed with four different Hamiltonians. Electronic and total nuclear relaxed values are given.

	Direct ($\mathrm{C} / \mathrm{m}^{2}$)				Converse (pm/V)			
	e_{15}	e_{21}	e_{31}	e_{33}	d_{15}	d_{21}	d_{31}	d_{33}
HF								
Relaxed	-7.52	3.24	-3.30	-4.41	1562^{\dagger}	-511^{\dagger}	-9.2	-15.6
Clamped	0.14	-0.19	0.06	-0.14	1.6	-0.8	0.2	-0.4
LDA								
Relaxed	-5.81	3.75	-4.77	-6.46	-95.0	30.3	-8.7	-16.8
Clamped	0.13	-0.15	0.04	-0.12	1.1	-0.6	0.2	-0.4
PBE								
Relaxed	-4.31	1.93	-2.11	-3.52	-290	80.6	-5.2	-14.1
Clamped	0.20	-0.28	0.05	-0.23	2.5	-1.4	0.3	-0.9
PBEO								
Relaxed	-4.67	1.99	-2.17	-3.45	-271	73.9	-5.0	-12.2
Clamped	0.21	-0.28	0.06	-0.22	2.3	-1.2	0.3	-0.8

\dagger These unusual large values are due to very large elements of the HF compliance tensor $\mathbb{S}=\mathbb{C}^{-1}$ in this case.
A. Mahmoud, A. Erba, Kh. E. El-Kelany, M. Rérat and R. Orlando, Phys. Rev. B (2013)

CRYSTAL14: Photoelastic Properties

The three independent elasto-optic constants of MgO, computed at PBE level, as a function of the electric field wavelength λ
p44 is almost wavelength independent p11 and p12 show a clear dependence from λ
Dashed vertical lines in the figure identify the experimental range of adopted electric field wavelengths

TABLE IV: Elasto-optic constants of the MgO crystal as experimentally measured by various workers, compared with the results of the present study.

| | $p_{11}-p_{12}$ | | | | p_{44} |
| :--- | :--- | :--- | :--- | :--- | :--- |$\left.p_{11}\right) ~ p_{12}$.

A. Erba and R. Dovesi, Phys. Rev. B 88, 045121 (2013)

Fisica Torino 2014

Vibrational properties

IR and Raman spectra......

Garnets: $\mathrm{X}_{3} \mathrm{Y}_{2}\left(\mathrm{SiO}_{4}\right)_{3}$

X	\mathbf{Y}	Name
Mg	Al	Pyrope
Ca	Al	Grossular
Fe	Al	Almandine
Mn	Al	Spessartine
Ca	Fe	Andradite
Ca	Cr	Uvarovite

Space Group: Ia-3d

80 atoms in the primitive cell (240 modes)

$$
\Gamma^{\text {rid }}=\mathbf{3} \mathbf{A}_{1 \mathrm{~g}}+5 \mathrm{~A}_{2 \mathrm{~g}}+\mathbf{8} \mathbf{E}_{\mathrm{g}}+14 \mathrm{~F}_{1 \mathrm{~g}}+\mathbf{1 4} \mathbf{F}_{2 \mathrm{~g}}+5 \mathrm{~A}_{1 \mathrm{u}}+5 \mathrm{~A}_{2 \mathrm{u}}+10 \mathrm{E}_{\mathrm{u}}+\mathbf{1 8} \mathrm{F}_{1 \mathrm{u}}+16 \mathrm{~F}_{2 \mathrm{u}}
$$

$17 \operatorname{IR}\left(\mathbf{F}_{\mathbf{1 u}}\right)$ and $25 \operatorname{RAMAN}\left(\mathbf{A}_{\mathbf{1 g}}, \mathbf{E}_{\mathbf{g}}, \mathbf{F}_{\mathbf{2 g}}\right)$ active modes

Silicate garnet spessartine structure: $\mathrm{Mn}_{3} \mathrm{Al}_{2}\left(\mathrm{SiO}_{4}\right)_{3}$

tetrahedra
octahedra

Harmonic frequency in solids with CRYSTAL

Building the Hessian matrix

$$
v_{j}=\frac{\partial V}{\partial u_{j}} \quad H_{j i}=\left[\frac{\partial v_{j}}{\partial u_{i}}\right]_{0} \approx \frac{v_{j}\left(0, \ldots, u_{i}, \ldots\right)-v_{j}\left(0, \ldots,-u_{i}, \ldots\right)}{2 u_{i}}
$$

analytical first derivative
$W_{i j}(k=0)=\sum_{G} \frac{H_{i j}^{0 G}}{\sqrt{M_{i} M_{i} .}}$
Isotopic shift can be calculated at no cost!

Spessartine raman modes : Calc vs Exp

Calculated ModesBSB			Observed Modes		Frequency differences (Δu) are evaluated with respect to experimental data. U and ΔU in cm^{-1}.
			Exp. a)	Exp. b)	
	v	$\Delta \begin{array}{ll}\Delta & \text { a) }\end{array}$	v	v	
$\mathrm{F}_{2 \mathrm{~g}}$	1033	-4	1029	1027	
$\mathrm{E}_{2 \mathrm{~g}}$	914	-1	913	913	a) Hofmeister \&Chopelas, Phys. Chem Min. 1991 b) Kolesov \&Geiger, Phys. Chem. Min. 1998
$\mathrm{A}_{2 \mathrm{~g}}$	910	-5	905	905	
$\mathrm{F}_{2 \mathrm{~g}}$	877	2	879	878	
$\mathrm{E}_{2 \mathrm{~g}}$	852	-	-	892	
$\mathrm{F}_{2 \mathrm{~g}}$	845	4	849	849	
$\mathrm{F}_{2 \mathrm{~g}}$	640	-10	630	628	
$\mathrm{E}_{2 \mathrm{~g}}$	596	-4	592	5920	
$\mathrm{F}_{2 \mathrm{~g}}$	588	-15	573	573	
$\mathrm{A}_{2 \mathrm{~g}}$	561	-9	552	550	
$\mathrm{E}_{2 \mathrm{~g}}$	531	-9	522	521	
$\mathrm{F}_{2 \mathrm{~g}}$	505	-5	500	499	
$\mathrm{F}_{2 \mathrm{~g}}$	476	-1	475	472	

Spessartine raman modes: Calc vs Exp

Calculated ModesBSB			Observed Modes	
			Exp. a)	Exp. b)
	v	$\Delta v \quad$ a)	v	v
$\mathrm{E}_{2 \mathrm{~g}}$	376	-4	372	372
$\mathrm{F}_{2 \mathrm{~g}}$	366	-	-	-
$\mathrm{F}_{2 \mathrm{~g}}$	348	2	350	350
$\mathrm{A}_{2 \mathrm{~g}}$	342	8	350	347
$\mathrm{E}_{2 \mathrm{~g}}$	320	1	321	318
E_{2}	315	13	302	314
$\mathrm{E}_{2 \mathrm{~g}}$	299	-30	269	-
$\mathrm{F}_{2 \mathrm{~g}}$	221	0	221	229
$\mathrm{F}_{2 \mathrm{~g}}$	195	1	196	194
$\mathrm{F}_{2 \mathrm{~g}}$	165	10	175	163
$\mathrm{E}_{2 \mathrm{~g}}$	163	-1	162	162
$\mathrm{F}_{2 \mathrm{c}}$	105	-	-	-

Frequency differences (Δu) are evaluated with respect to experimental data. U and $\Delta \mathrm{u}$ in cm^{-1}.

Garnets : Statistics

IR frequencies

		TO			LO		
	n. of compared ν	$\overline{\|\Delta\|}$	$\bar{\Delta}$	$\left\|\Delta_{\max }\right\|$	$\mid \overline{\|\Delta\|}$	$\bar{\Delta}$	$\left\|\Delta_{\max }\right\|$
Pyrope $^{(a)}$	$17+17$	6.0	-1.0	23.3	6.8	-2.8	23.3
$\operatorname{Grossular}^{(b)}$	$16+16$	3.4	-0.8	8.6	5.1	-2.0	28.2
Almandine $^{(a)}$	$17+17$	5.5	1.6	21.1	3.9	0.6	12.7
Spessartine $^{(c)}$	$17+17$	4.2	-2.4	11.0	3.4	0.0	8.6
Andradite $^{(b)}$	$17+17$	7.3	-7.3	13.7	6.2	-6.2	12.0
Uvarovite $^{(d)}$	$5+5$	4.0	-1.8	6.5	3.8	-2.0	6.3
TOTAL	$89+89$	5.2	-2.0	23.3	5.0	-2.1	28.2

Raman frequencies ${ }^{(\mathrm{e})}$

	$\overline{\|\Delta\|}$	$\bar{\Delta}$	$\left\|\Delta_{\max }\right\|$
Pyrope	7.6	-3.2	31
Grossular	7.5	3.0	32
Almandine	4.2	0.7	17
Spessartine	6.8	0.6	30
Andradite	5.3	-5.1	11
Uvarovite	4.6	-0.4	22

a) Hofmeister et al., Phys. Chem. Min. 1996. 81, 418
b) McAloon et. al., Phys. Chem. Min. 1995. 80, 1145
c) Hofmeister et. al., Phys. Chem. Min. 1991. 17, 503
d) Hofmeister, private comm.
e) Kolesov et. al., Phys. Chem. Min. 1998. 25, 142

Statistical analysis of calculated IR and Raman modes of garnets compared to experimental data.

IR reflectance spectrum

Reflectivity is calculated from dielectric constant by means of:

$$
R(\nu)=\left|\frac{\sqrt{\epsilon(\nu)-\sin ^{2} \theta}-\cos \theta}{\sqrt{\epsilon(\nu)-\sin ^{2} \theta}+\cos \theta}\right|^{2}
$$

(θ is the beam incident angle)

The dielectric function is obtained with the classical dispersion relation:

Comparison of computed and experimental IR reflectance spectra for garnets: a) pyrope b) grossular c) almandine .

$$
\epsilon(\nu)=\epsilon_{\infty}+\sum_{j} \frac{f_{j} \nu_{j}^{2}}{\nu_{j}^{2}-\nu^{2}-i \nu \gamma_{j}}
$$

IR reflectance spectrum of grossular

Computed and experimental IR reflectance spectra of grossular garnet, plus imaginary parts of ε and $1 / \varepsilon$.

IR reflectance spectrum: required quantities

- Optical dielectric constant ε^{∞}
- Computed through a Coupled Perturbed HF(KS) scheme

	Calc.	Exp.	$\Delta \%$
Pyrope	2.74	3.06	-12
Grossular	2.78	2.96	-7
Almandine	3.23		
Spessartine	3.08	3.24	-5
Andradite	3.40	3.53	-4
Uvarovite	3.24	3.42	-6

Optical dielectric constants of garnets
(expt. from Medenbach et al., J. Opt. Soc.Am. B, 1997, 14, 3299-3318)

- Transverse Optical vibrational frequencies v
- Eigenvalues of the Hessian matrix, constructed in the harmonic approximation
- Damping factors γ
- A constant value $8 \mathrm{~cm}^{-1}$ is adopted

The RAMAN spectrum of Pyrope:

25 modes

From $\mathrm{A}_{1 \mathrm{~g}}+\mathrm{E}_{\mathrm{g}}$ wavenumbers...

		Ours	Hofn	neister	Cho	pelas	Kol	esov
Sym	M	$\mathrm{v}_{\left(\mathrm{cm}^{\prime}\right)}$	$\mathrm{v}_{\left(\mathrm{cm}^{1}\right)}$	$\Delta v_{\text {(cm') }}$	$\mathrm{v}_{\left(\mathrm{cm}^{\text {² }}\right.}$	$\Delta v_{(c m-1)}$	$\mathrm{v}_{\left(\mathrm{cm}^{-1}\right)}$	$\Delta v_{\text {(cm') }}$
$A_{1 g}$	1	352.5	362	-10	362	-10	364	-12
	2	564.8	562	3	562	3	563	2
	3	926.0	925	1	925	1	928	-2
E_{g}	4	209.2	203	6	203	6	211	-2
	5	308.5			309	-1	284	25
	6	336.5	342	-6			344	-8
	7	376.9	365	12	379	-2	375	2
	A		439		439			
	8	526.6	524	3	524	3	525	2
	9	636.0	626	10	626	10	626	10
	10	864.4			867	-3		
	B		911					
	11	937.4	938	-1	938	-1	945	-8

Frequency differences are evaluated with respect to calculated data.

Hofmeister: Hofmeister \& Chopelas, Phys. Chem. Min., 1991

Chopelas: Chaplin \& Price \& Ross, Am. Mineral., 1998

Kolesov: Kolesov \& Geiger, Phys. Chem. Min., 1998

... to RAMAN spectra!

And now $\mathrm{F}_{2 \mathrm{~g}}$ wavenumbers...

		Ours	Hofm	neister	Cho	pelas	Kol	esov
Sym.	M	v (cm-1)	v (cm-1)	$\Delta v_{(\mathrm{cm}-1)}$	$\mathrm{V}_{(\mathrm{cm}-1)}$	$\Delta v_{(\mathrm{cm}-1)}$	$\mathrm{V}_{(\mathrm{cm}-1)}$	$\Delta v_{(\mathrm{cm}-1)}$
$\mathrm{F}_{2 \mathrm{~g}}$	12	97.9	-	-	-	-	135	-37
	13	170.1	-	-	-	-	-	-
	14	203.7	208	-4	208	-4	212	-8
	C		230		230			
	15	266.9	272	-5	272	-5	-	-
	D		285					
	16	319	318	1	318	1	322	-3
	E				342			
	17	350.6	350	1	350	1	353	-2
	18	381.9	379	3	379	3	383	-1
	19	492.6	490	3	490	3	492	1
	20	513.5	510	4	510	4	512	2
	21	605.9	598	8	598	8	598	8
	22	655.3	648	7	648	7	650	5
	23	861	866	-5	866	-5	871	-10
	24	896.7	899	-2	899	-2	902	-5
	25	1068.4	1062	6	1062	6	1066	2

B3LYP overstimates the lattice parameter!

Frequency differences are evaluated with respect to calculated data.

Hofmeister: Hofmeister \& Chopelas, Phys. Chem. Min., 1991

Chopelas: Chaplin \& Price \& Ross, Am. Mineral., 1998

Kolesov: Kolesov \& Geiger, Phys. Chem. Min., 1998

... and the RAMAN spectra!

$\mathbf{A}_{1 \mathrm{~g}}$ peaks also in $\mathbf{F}_{\mathbf{2 g}}$ spectrum caused by the presence of different crystal orientations and/or rotation of the polarized light.

High-order dielectric properties of solids

The total energy of a crystal in an electric field

The total energy ($E_{\text {tot }}$) of a crystal (or a molecule) in a "weak" electric field (ε) can be expressed as a perturbative series of the field components plus the total energy of the field-free system ($E^{0}{ }_{\text {tot }}$):

$$
\begin{aligned}
& E_{\text {tot }}(\varepsilon)=E_{\text {tot }}^{0}-\mu \cdot \varepsilon-\frac{1}{2!} \alpha \varepsilon^{2}-\frac{1}{3!} \beta \varepsilon^{3}-\frac{1}{4!} \gamma \varepsilon^{4}-\ldots \\
& \mu_{t}=-\left(\frac{\partial E_{\text {tot }}}{\partial \varepsilon_{t}}\right)_{\varepsilon=0} \quad \begin{array}{l}
\text { dipole } \\
\text { moment }
\end{array} \\
& \alpha_{t u}=-\left(\frac{\partial^{2} E_{t o t}}{\partial \varepsilon_{t} \partial \varepsilon_{u}}\right)_{\varepsilon=0} \\
& \beta_{u v}=-\left(\frac{\partial^{3} E_{t o t}}{\partial \varepsilon_{t} \partial \varepsilon_{u} \partial \varepsilon_{v}}\right)_{c=0}^{\text {first-order }} \begin{array}{l}
\text { hyperpolarizability }
\end{array} \\
& \left.\gamma_{\text {tuvw }}=-\left(\frac{\partial^{4} E_{\text {tot }}}{\partial \varepsilon_{t} \partial \varepsilon_{u} \partial \varepsilon_{v} \partial \varepsilon_{w}}\right)\right)_{\varepsilon=0}^{\text {second-order }} \begin{array}{l}
\text { hyperpolarizability }
\end{array}
\end{aligned}
$$

The effect of a low-intensity high-frequency electric field (ε) applied to a crystal within the periodic boundary conditions can be represented by the following perturbative term in the Hamiltonian operator:

$$
\Omega(\varepsilon, \mathbf{k})=\varepsilon \cdot\left[\begin{array}{l}
\mathbf{r} \\
\uparrow
\end{array}+i \nabla_{k}\right]
$$

Ω depends on \mathbf{k},
any point in the
reciprocal space

Static polarizability and hyperpolarizabilities

$$
\begin{aligned}
& \text { substitute for } \mathrm{U}^{[2]}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\frac{1}{2} \sum_{m}^{\text {im }} W_{l m}^{(m)} U_{m j}^{(m)}-\frac{1}{2} \sum_{m}^{\text {im }} U_{l m}^{(w)} E_{m j}^{(m)}\right)+i U_{j^{\prime \prime}}^{(t(w)} \frac{\partial U_{l j}^{(t)}}{\partial k_{u}}\right] \\
& 2 n+1 \text { formulation }
\end{aligned}
$$

Dielectric properties

Polarizability (α) and hyperpolarizability (β and γ) tensors are related to other tensors:
$V=$ unit cell volume $\quad \chi_{t u}^{(1)}=\frac{4 \pi}{V} \alpha_{t u} \quad$ first-order electric susceptibility

$$
\in_{t u}=\delta_{t u}+\chi_{t u}^{(1)} \quad \text { dielectric tensor }
$$

$\delta=$ Kronecker delta

$$
\begin{aligned}
& \chi_{t u v}^{(2)}=\frac{2 \pi}{V} \beta_{t u v} \\
& d_{t u v}=\frac{\chi_{t u v}^{(2)}}{2} \\
& \chi_{t u w w}^{(3)}=\frac{2 \pi}{3 V} \gamma_{t u v w}
\end{aligned}
$$

second-order electric susceptibility
second-harmonic generation (SHG)
electric susceptibility
third-order electric susceptibility

Potassium Di-hydrogen Phosphate KDP

- Chemical formula: $\mathrm{KH}_{2} \mathrm{PO}_{4}$

$$
\begin{gathered}
\stackrel{\mathrm{OH}}{\mathrm{OH}} \\
\mathrm{~K}^{+}-\mathrm{P}-\mathrm{OH} \\
\text { IO } \\
\mathrm{O}
\end{gathered}
$$

- Ferroelectric Phase Transition (PARA->FERRO) at $123^{\circ} \mathrm{K}$

Potassium Di-hydrogen Phosphate KDP

Tetragonal (I-4d2)

- Symmetric H-bonds
- Above T_{c} : DISORDER, protons move along the H bond (PE)
- Transition state as documented by negative frequencies.

Orthorhombic (Fdd2)

- Protonic Trasfer
- Below T_{c} : ORDER, protons fixed in ferroelectric domains (FE)
- Real minimum: all frequencies are positive

Potassium Di-hydrogen Phosphate KDP

	I-4d2 (Exp)	Fdd2 (Exp.)
a	$7.44(7.44)$	$10.56(10.53)$
b	$7.44(7.44)$	$10.67(10.44)$
c	$6.95(6.97)$	$6.98(6.90)$
$\mathrm{H}-\mathrm{O}_{1}$	$1.19(1.25)$	$1.03(1.05)$
$\mathrm{H}-\mathrm{O}_{2}$	$1.19(1.25)$	$1.48(1.44)$
$\mathrm{P} \mathrm{O}_{1}$	$1.54(1.54)$	$1.58(1.59)$
$\mathrm{P}-\mathrm{O}_{2}$	$1.54(1.54)$	$1.51(1.50)$

OPTGEOM: PBEO [1]

1. V. Lacivita, M. Rérat, B. Kirtman, M. Ferrero, R. Orlando and R. Dovesi, J. Chem. Phys. 2009.

Potassium Di-hydrogen Phosphate KDP

		I-4d2 (Exp)	Fdd2 (Exp)
Dielectric Tensor (adimensional)	$\varepsilon(x \mathrm{xx})$	$2.23(2.24)$	$2.18(2.26)$
	$\varepsilon(y y)$	$2.23(2.24)$	$2.20(2.30)$
	$\varepsilon(z z)$	$2.05(2.13)$	$2.06(2.16)$
Second Harmonic Generation (SGG) coefficients (pm/v)	$\mathrm{d}(\mathrm{xxz})$	$0(0)$	0,389
	$\mathrm{~d}(\mathrm{yyz})$	$0(0)$	$-0,255$
	$\mathrm{~d}(\mathrm{xyz})$	$0(0)$	$-0,018$
Energy gap (eV)	G	$0.37(0.39)$	0

CPHF: B3LYP, Exp. geom.

1. V. Lacivita, M. Rérat, B. Kirtman, M. Ferrero, R. Orlando and R. Dovesi, J. Chem. Phys. 2009.

Potassium Di-hydrogen Phosphate KDP

Dielectric Tensor and Optical Indicatrix

$$
n=\sqrt{\epsilon}
$$

- DIAGONALIZATION -> PRINCIPAL REFRACTIVE INDICES ($\alpha<=\beta<=\gamma$)
- BIREFRINGENCE: $\boldsymbol{B}=\gamma-\alpha(\neq 0)$
- OPTICAL CLASSES:

1) MONOAXIAL = one
monorefringence direction (one optical axis)
2) BIAXIAL = two monorefringence directions (two optical axes)

Potassium Di-hydrogen Phosphate KDP

Tetragonal (I-4d2)

- Monoaxial
- Oblate optical indicatrix

Orthorhombic (Fdd2)

Nanotubes

Nanotubes

What's new in the implemented method?

The exploitation of the high point symmetry
in helical 1D systems allows to
dramatically reduce the computational cost and automatically build nanotubes from 2D and 3D structures.

Why?

Nanotube ab initio simulation is, in general, expensive:
the unit cell can contain hundreds or thousands of atoms.

QM ab initio calculation of nanotubes with large basis sets and hybrid functionals: POSSIBLE AND NOT EXPENSIVE

Nanotubes

Automatic Construction of a Nanotube from 2D Structures (CRYSTAL can authomatically cut 2D layers from 3D structures)

We start from 2D graphene, a simple case ---> C nanotube (CNT).
Shortest lattice vector perpendicular to \boldsymbol{R} :

$$
L=l_{1} a_{1}+l_{2} a_{2}
$$

* Noël, D’Arco, Demichelis, Zicovich-Wilson, Dovesi; J. Comput. Chem., 2010, 31, 855-862

Nanotubes

Exploitation of the High Point Symmetry of Nanotubes

A CNT unit cell can contain hundreds of atoms BUT
ONLY 2 IRREDUCIBLE ATOMS WITH HELICAL SYMMETRY EXPLOITATION

EXAMPLE: frequency calculation of the $(\mathbf{2 4}, \mathbf{0})$ SWCNT
(96 atoms in the unit cell)
FREQUENCY CALCULATION:

- equilibrium geometry
- displacement of each atom along the 3 Cartesian directions $\mathbf{9 6 x 3} \mathbf{+ 1}=\mathbf{2 8 9}$ SCF calculations

If the calculation is performed on 2 irreducible atoms:
$\mathbf{2 x 3 + 1}=\mathbf{7}$ SCF calculations (helical symmetry exploitation)

* Noël, D'Arco, Demichelis, Zicovich-Wilson, Dovesi; J. Comput. Chem., 2010, 31, 855-862

Nanotubes

Exploitation of the High Point Symmetry of Nanotubes

 The helical symmetry of nanotubes is then exploited at three levels:1 - Automatic generation of the nanotube starting from a 2D structure
\checkmark Easy to use
\checkmark Thick slabs can be treated
\checkmark Geometry guess for nanotubes

Nanotubes

Time Scaling

Single SCF step of $(n, 0)$ SW-CNT, $n=8$ to 24

```
N(AOs) : 704 to2112 time/s - SCF step
Symmetry
operators (NS): }16\mathrm{ to }4
Time (24,0)<1.2 Time (8,0) 80-
Gradient: same behavior
as bi-electronic integrals,
cost from (12,0) to (24,0)
varies by less than 1%
Size of irreducible Fock
matrix roughly constant
B3LYP, 6-1111G*
single processor Intel Xeon
1.86GHz, RAM 8Gb
```

```
80
\square Bi-electronic integrals
F(k) diagonalization+density matrix construction
DFT contribution
```



```
SCF cost increases (slowly) for three reasons:
1- Diagonalization scales linearly with \(\mathbf{N} \mathbf{S}\).
2- AO \(\rightarrow\) Bloch \(\rightarrow\) SACO and back transformations to AO basis for building the density matrix scale close to \(\mathrm{N}(\mathrm{AOs}) * \mathrm{~N}(\mathrm{AOs})\).
3-Overhead for symmetry analysis increases with N \(\mathbf{S}\)

\section*{Nanotubes}

\section*{Time Scaling}
- NANORE (SWCNTRE): build a \(\left(n_{1}, n_{2}\right)\) nanotube from the structure of another one
"old" nanotube unrolled and re-rolled according to a new \(\boldsymbol{R}\) vector, with minor modifications to the structure.

EXAMPLE: geometry optimisation of imogolite \(\mathrm{Al}_{2}(\mathrm{OH})_{3} \mathrm{SiO}_{3} \mathrm{OH}\), tubular hydrated aluminosilicate
(thick slabs, large systems, tube and slab geometries very different)

\(\Delta \mathrm{E}\) : Energy difference with respect to slab, \(\mathrm{kJ} / \mathrm{mol}\) per fu
\(\delta \mathrm{E}\) : Energy relaxation after rigid unrolling and re-rolling , \(\mathrm{kJ} / \mathrm{mol}\) per fu


\footnotetext{
* Demichelis, Noël, D’Arco, Maschio, Orlando, Dovesi; submitted for publication
}

\section*{Nanotubes}

\section*{Inorganic Nanotubes: the Case of Chrysotile} FIRST AB INITIO SIMULATION
 OF SINGLE LAYER CHRYSOTILE (smallest fibre in the nature \(\sim 1000\) atoms in the unit cell)

\author{
"White" asbestos: wrapping of lizardite - phyllosilicate, \(\mathbf{M g}_{\mathbf{3}} \mathbf{S i}_{\mathbf{2}} \mathbf{O}_{\mathbf{5}} \mathbf{( O H} \mathbf{H}_{\mathbf{4}}\) \\ -brucite-type octahedral sheet \(\left(\mathrm{MgO}_{6}\right.\) octahedra sharing edges) \\ -tetrahedral sheet (vertices-sharing \(\mathrm{SiO}_{4}\) tetrahedra forming hexagonal motif)
}

Brucite-like slab : lattice parameter \(5.43 \AA\)
\(\mathrm{SiO}_{3}(\mathrm{OH})_{2}\) slab : lattice parameter \(5.32 \AA\)
Lizardite slab : lattice parameter \(5.37 \AA\)
The misfit might be one of the main responsible for chrysotile curling.
Octahedral external wall is allowed to expand and tetrahedral wall to contract.

\section*{FULLERENES}

\section*{Input again: general!!}

\author{
SLAB \\ 77 \\ 2.4612 \\ 1 \\ \(6-0.333333333330 .333333333330\). FULLE \\ 22 \\ IH \\ ICOSA
}


Some (in pink) hexagons (or pentagons in orange) cannot change their orientation; it is fixed by symmetry

\section*{C1500 \\ fullerene}


Fisica Torino 2014


Fisica Torino 2014

\title{
Comparison of optimized structures
}


C540
Each fullerene is compared to the C1500. The center of pentagons have been taken as reference.

C960

\((2,2)\)


Fisica Torino 2014

\section*{FULLERENES: size of the matrices}
\begin{tabular}{|lcccccccc|}
\hline\((n, n)\) & \(n_{\text {at }}\) & \(N_{\text {at }}\) & \(N_{\text {AO }}\) & \(S_{\text {FIRR }}\) & \(S_{\text {FRED }}\) & \(R_{1}\) & \(R_{2}\) & \(R_{4}\) \\
\hline\((1,1)\) & 1 & 60 & 840 & 1759 & \(169^{\prime} 980\) & 97 & 401 & 22 \\
\hline\((2,2)\) & 3 & 240 & 3360 & 6707 & \(716^{\prime} 130\) & 107 & 1683 & 23 \\
\hline\((3,3)\) & 6 & 540 & 7560 & 14570 & \(1^{\prime} 609^{\prime} 020\) & 110 & 3923 & 23 \\
\hline\((4,4)\) & 10 & 960 & 13440 & 25377 & \(2^{\prime} 847^{\prime} 690\) & 112 & 7118 & 23 \\
\hline\((6,6)\) & 21 & 2160 & 30240 & 55661 & \(6^{\prime} 362^{\prime} 370\) & 114 & 16429 & 24 \\
\hline\((8,8)\) & 36 & 3840 & 53760 & 97559 & \(11^{\prime} 260^{\prime} 170\) & 115 & 29625 & 24 \\
\hline\((10,10)\) & 55 & 6000 & 84000 & 151071 & \(17^{\prime} 541^{\prime} 090\) & 116 & 46707 & 24 \\
\hline
\end{tabular}
\(n_{a t}=\) number of irreducible atoms,
\(N_{a t}=\) number of atoms,
\(N_{A O}=\) number of AO
\(\mathrm{S}_{\text {FIR }}\left(\mathrm{S}_{\text {FRED }}\right)=\) size of the irreducible (reducible) compact Fock matrix.
\(\mathrm{R}_{1}, \mathrm{R}_{2}\) and \(\mathrm{R}_{4}=\mathrm{S}_{\text {FRED }} / \mathrm{S}_{\text {FIRR }}, \mathrm{N}_{\mathrm{AO}}^{2} / \mathrm{S}_{\text {FIRR }}\) and \(N_{A O} / M A X_{I R}\).
\(N_{\text {op }}=120\)
\(N_{I R}=10\)
\begin{tabular}{|ccccccc|}
\hline & \(\mathbf{t}\) & \(\mathbf{( 1 , 1 )}\) & \(\mathbf{( 4 , 4 )}\) & \(\mathbf{( 6 , 6 )}\) & \(\mathbf{( 8 , 8 )}\) & \((\mathbf{1 0 , 1 0 )}\) \\
\hline A. & init & 26.36 & 64.92 & 184.54 & 418.64 & 825.41 \\
\hline " & over & 81.40 & 8.11 & 22.36 & 56.73 & 135.85 \\
\hline B. & pole & 326.15 & 6.64 & 14.76 & 26.51 & 40.77 \\
\hline " & biel & 8.34 & 154.46 & 578.06 & 1141.61 & 1885.74 \\
\hline " & mono & 0.02 & 4.45 & 21.98 & 68.70 & 166.01 \\
\hline C. & fock & 0.16 & 7.71 & 18.91 & 36.27 & 56.31 \\
\hline D. & diag & 0.1 & 2.51 & 26.20 & 183.42 & 729.50 \\
\hline E. & dens & 1.23 & 93.02 & 233.02 & 441.63 & 740.14 \\
\hline F. & dft & 5.50 & 55.16 & 126.18 & 437.99 & 702.36 \\
\hline & TOT \(_{\text {cyc }}\) & 15.67 & 323.97 & 1019.14 & 2336.16 & 4320.87 \\
\hline & TOT \(_{\text {SCF }}\) & 1265.23 & 6552.43 & 20589.74 & 47198.57 & 87378.66 \\
\hline & grad & 83.99 & 1253.55 & 3191.33 & 10088.28 & 16170.70 \\
\hline
\end{tabular}

\section*{Time (in seconds): ONE CORE}
construction of symmetry group and transformation matrices (init), construction of the overlap matrix (over), calculation of multipole (pole), bi- (biel) and mono- (mono) electronic integrals, transformation of finto \(F\) (fock), Fock matrix diagonalization (diag), construction and back transformation of the density matrix (dens), calculation of the electron density over the DFT grid (dft), a single SCF cycle ( TOT \(_{\text {cyc }}\) from B. to F.), the entire SCF procedure ( TOT \(_{\text {SCF }}, 20\) SCF cycles considered), calculation of the gradient for geometry optimization (grad). Calculations from (7,7) on (marked with an asterisk) were performed using the "low memory" option.```

