Constraints on neutrino mass and dark matter coldness from cosmological data

Matteo Viel – INAF/OATS & INFN/TS Dipartimento di Fisica torino Colloqium (ex seminari comuni)– 21st November 2014

OUTLINE

INTRO: the Intergalactic Medium and its main manifestation

TOOLS: Beyond linear theory with N-body/hydrodynamic simulations

DATA: State of the art observables at large and small scales

INTRO

Let's learn:

- why atomic physics is important for intergalactic space
- baryons in intergalactic space are diffuse/low density
- physics of the IGM is relatively simple (at least at large scales)
- semi-analytical models can describe it well within 10% uncertainties or so

<u>The Lyman- α forest</u>

Lyman- α absorption is the main manifestation of the IGM

Tiny neutral hydrogen fraction after reionization.... But large cross-section

The Intergalactic Medium: Theory vs. Observations

<u>Modelling the IGM – I: Physics</u>

<u>Dark matter evolution</u>: linear theory of density perturbation + Jeans length $L_J \sim sqrt(T/\rho)$ + mildly non linear evolution

Hydrodynamic processes: mainly gas cooling

cooling by adiabatic expansion of the universe heating of gaseous structures (reionization)

- photoionization by a uniform Ultraviolet Background
- Hydrostatic equilibrium of gas clouds

dynamical time = $1/sqrt(G \rho) \sim$ **sound crossing time**= size /gas sound speed

Size of the cloud: > 100 kpc Temperature: ~ 10^4 K Mass in the cloud: ~ 10^9 M $_{\odot}$ Neutral hydrogen fraction: 10^{-5}

In practice, since the process is mildly non linear you need numerical simulations To get convergence of the simulated flux at the percent level (observed)

Modelling the IGM – II: Analytical models for the Ly-a forest

(Bi 1993, Bi & Davidsen 1997, Hui & Gnedin 1998, Matarrese & Mohayaee 2002)

MV, Matarrese S., Mo HJ., Haehnelt M., Theuns T., 2002a, MNRAS, 329, 848

Bi & Davidsen 1997, ApJ, 479, 523

END OF INTRO

We have characterized *the physics of the IGM* and we can now fully exploit the fact that:

The IGM is a probe of matter fluctuations, a laboratory for fundamental physics. a sink (and a reservoir) for (of) galactic baryons

RESULTS FROM BOSS/SDSS-III

Geometrical and dynamical state of the Universe at z = 2.3

New regime to be probed with Lyman-lpha forest in 3D

SDSS-II

SDSS-III

3D cross-correlation between Lyman- α flux and quasars

$$P_{qF}(\mathbf{k}) = b_q \left[1 + \beta_q \mu_k^2 \right] b_F \left[1 + \beta_F \mu_k^2 \right] P(k)$$

SDSS-IV

Delubac et al. 14

WHY LYMAN-Q???

1) ONE DIMENSIONAL

$$\langle \tilde{F}_k^2 \rangle = \frac{1}{(2\pi)^2} \int dk_x \int dk_y P(k_x, k_y, k) = \frac{1}{2\pi} \int_k^\infty P(y) y \, dy$$

e.g. Kaiser & Peacock 91

2) AND ALSO THREE DIMENSIONAL

$$P(k) = 2\pi \int_0^\infty dr_\perp r_\perp J_0(r_\perp \sqrt{k^2 - q^2}) \ \pi(q|r_\perp)$$

e.g. Viel et al. 02

3) HIGH REDSHIFT

Where you are possibly closer to primordial P(k)

... unfortunately non-linearities and thermal state of the IGM are quite important....

CONSTRAINTS ON COSMOLOGICAL NEUTRINOS

COSMOLOGICAL NEUTRINOS - I: WHAT TO START FROM

$$0.056 \,(0.095) \,\,{
m eV} \lesssim \, \sum_i m_i \lesssim 6 \,\,{
m eV}$$

COSMOLOGICAL NEUTRINOS - II: FREE-STREAMING SCALE

Neutrino thermal velocity
$$v_{\rm th} \equiv \frac{\langle p \rangle}{m} \simeq \frac{3T_{\nu}}{m} = \frac{3T_{\nu}^0}{m} \left(\frac{a_0}{a}\right) \simeq 150(1+z) \left(\frac{1\,{\rm eV}}{m}\right) {\rm km\,s^{-1}}$$

Neutrino free-streaming scale Scale of non-relativistic transition

$$k_{FS}(t) = \left(\frac{4\pi G\bar{\rho}(t)a^2(t)}{v_{\rm th}^2(t)}\right)^{1/2} \qquad k_{\rm nr} \simeq 0.018 \ \Omega_{\rm m}^{1/2} \left(\frac{m}{1 \,{\rm eV}}\right)^{1/2} h \,{\rm Mpc}^{-1}$$

Below k_{nr} there is suppression in power at scales that are cosmologically important

COSMOLOGICAL NEUTRINOS - III: LINEAR MATTER POWER

MASSIVE NEUTRINOS

THE FUTURE: THE NEUTRINO HALO?

Villaescusa-Navarro, Bird, Garay, Viel, 2013, JCAP, 03, 019 Marulli, Carbone, Viel+ 2011, MNRAS, 418, 346

COSMOLOGICAL NEUTRINOS : NON-LINEAR MATTER POWER

CONSTRAINTS on NEUTRINO MASSES USING NON-LINEARITIES

Xia, Granett, Viel, Bird, Guzzo+ 2012 JCAP, 06, 010

95% C.L. $\sum m_{\nu}$ [eV]	Without HST Prior		With HST Prior	
	$\ell_{\rm max} = 630$	$\ell_{\rm max} = 960$	$\ell_{\rm max} = 630$	$\ell_{\rm max} = 960$
WMAP7	1	.17	0	.50
WMAP7 + CFHTLS	0.64	0.43	0.41	0.29
WMAP7 + SDSS + CFHTLS	0.47	0.35	0.35	0.28

If using just linear 0.43eV – Improvement is about 20% when extending to non-linear ²⁸

CONSTRAINTS on NEUTRINO MASSES FROM Planck: I

 $\Sigma m_{v} < 0.93 \text{ eV}(2\sigma)$

Costanzi+ 2014, JCAP

 $\Sigma m_{v} < 0.24 \text{ eV}(2\sigma)$

Costanzi+ 2014

 $\Sigma m_{v} < 0.14 \text{ eV}(2\sigma)$

Costanzi+ 2014

CONSTRAINTS on NEUTRINO MASSES FROM Planck+BAO+old Lya: IV

2 eV 29 eV

- 59 eV
- .9 eV

Costanzi, Sartoris, MV, Borgani 2014, JCAP in press

Constraint on neutrino masses from SDSS-III/BOSS $Ly\alpha$ forest and other cosmological probes

Nathalie Palanque-Delabrouille,^{*a,b*} Christophe Yèche,^{*a*} Julien Lesgourgues,^{*c,d,e*} Graziano Rossi,^{*a,f*} Arnaud Borde,^{*a*} Matteo Viel,^{*g,h*} Eric Aubourg,^{*i*} David Kirkby,^{*j*} Jean-Marc LeGoff,^{*a*} James Rich,^{*a*} Natalie Roe,^{*b*} Nicholas P. Ross,^{*k*} Donald P. Schneider,^{*l,m*} David Weinberg^{*n*}

CONSTRAINTS on NEUTRINO MASSES FROM Planck+BAO+ NEW Lya: II

CONSTRAINTS on NEUTRINO MASSES FROM Planck+BAO+ NEW Lya: III

Parameters varied

Parameter	Central value	Range
$n_s \ldots \ldots$	0.96	± 0.05
$\sigma_8 \ldots \ldots$	0.83	± 0.05
$\Omega_m \dots$	0.31	± 0.05
$H_0 \ldots \ldots$	67.5	±5
$T_0(z = 3)$	14000	± 7000
$\gamma(z=3)$	1.3	± 0.3
$A^{ au}$	0.0025	± 0.0020
$\eta^{ au}$	3.7	±0.4
$\sum m_{\nu}$ (eV)	0.0	0.4, 0.8

CONSTRAINTS on NEUTRINO MASSES FROM Planck+BAO+ NEW Lya: IV

CONSTRAINTS on NEUTRINO MASSES FROM Planck+BAO+ NEW Lya: V

Neutrino effect having fixed the amplitude at the CMB scale

CONSTRAINTS on NEUTRINO MASSES FROM Planck+BAO+ NEW Lya: VI

Neutrino effect having fixed the amplitude at the 8 Mpc/h

CONSTRAINTS on NEUTRINO MASSES FROM Planck+BAO+ NEW Lya: VII

This is the effect we are seeking....

 $M_v < 0.15 \text{ eV Planck + Lya}$ $M_v < 0.14 \text{ eV Planck + Lya} + BAO$

THE COLDNESS OF COLD DARK MATTER

Viel, Becker, Bolton, Haehnelt, 2013, PRD, 88, 043502

THE COSMIC WEB in WDM/LCDM scenarios

WDM ACDM [h^dMpc] 0

> -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 log (1+δ_{tot})

z=0
$$\frac{T_x}{T_\nu} = \left(\frac{10.75}{g_*(T_D)}\right)^{1/3} < 1$$

$$k_{\rm FS} = \frac{2\pi}{\lambda_{\rm FS}} \sim 5 \, {\rm Mpc^{-1}} \left(\frac{m_x}{1 \, {\rm keV}}\right) \left(\frac{T_\nu}{T_x}\right)$$

$$\omega_x = \Omega_x h^2 = \beta \left(\frac{m_x}{94 \,\mathrm{eV}}
ight)$$

 $eta = (T_x/T_
u)^3$

z=2

 $k_{\rm FS} \sim 15.6 \frac{h}{\rm Mpc} \left(\frac{m_{\rm WDM}}{1 {\rm keV}}\right)^{4/3} \left(\frac{0.12}{\Omega_{\rm DM} h^2}\right)^{1/3} \label{eq:kFS}$

z=5

Viel, Markovic, Baldi & Weller 2013

THE WARM DARK MATTER CUTOFF IN THE MATTER DISTRIBUTION

IMPLICATIONS FOR STRUCTURE FORMATION

- Strong and weak lensing
- Galaxy formation
- Reionization/First Stars
- Dark Matter Haloes (mass functions)
- Luminous matter properties
- Gamma-Ray Bursts
- HI in the local Universe
- Phase space density constraints
- Radiative decays in the high-z universe

Markovic et al. 13/Faadely & Keeton 12

Menci et al 13, Kang et al. 13

Gao & Theuns 07

Pacucci et al. 13

Polisensky & Ricotti 11, Lovell et al. 09

De Souza et al. 13

Zavala et al. 09

Shi et al. 13

Boyarsky et al. 13

+ Lyman –α

HISTORY OF WDM LYMAN-α BOUNDS

Narayanan et al.00	: m > 0.75 keV	Nbody sims + 8 Keck spectra Marginalization over nuisance not done
Viel et al. 05	: m > 0.55 keV (2 σ)	Hydro sims + 30 UVES/VLT spectra Effective bias method of Croft et al.02
Seljak et al. 06	: $m > 2.5 \text{ keV} (2\sigma)$	Hydro Particle Mesh method + SDSS grid of simulation for likelihood
Viel et al. 06	: $m > 2 \text{ keV} (2\sigma)$	Fully hydro+SDSS Not full grid of sims. but Taylor expans.
Viel et al. 08	: $m > 4.5 \text{ keV} (2\sigma)$	SDSS+HIRES (55 QSOs spectra) Full hydro sims (Taylor expansion of the flux)
Boyarsky et al. 09	: m>2.2 keV (2σ)	SDSS (frequentist+bayesian analysis) emphasis on mixed ColdWarmDM models

DARK MATTER DISTRIBUTION

GAS DISTRIBUTION

HI DISTRIBUTION

"Warm Dark Matter as a solution to the small scale crisis: new constraints from high redshift Lyman-α forest data" MV+ arXiv:1306.2314

DATA: 25 high resolution QSO spectra at 4.48<z_{em}<6.42 from MIKE and HIRES spectrographs. Becker+ 2011

SIMULATIONS: Gadget-III runs: 20 and 60 Mpc/h and (512³,786³,896³)

Cosmology parameters: σ_8 , n_s , Ω_m , H_0 , m_{WDM} Astrophysical parameters: z_{reio} , UV fluctuations, T_0 , γ , $\langle F \rangle$ Nuisance: resolution, S/N, metals

METHOD: Monte Carlo Markov Chains likelihood estimator + very conservative assumptions for the continuum fitting and error bars on the data

Parameter space: m_{WDM} , T_0 , γ , $\langle F \rangle$ explored fully Parameter space: : σ_8 , n_s , Ω_m , H_0 , UV explored with second order Taylor expansion of the flux power

$$P_F(k, z; \mathbf{p}) = P_F(k, z; \mathbf{p}^0) + \sum_{i}^{N} \frac{\partial P_F(k, z; p_i)}{\partial p_i} \Big|_{\mathbf{p}=\mathbf{p}^0} (p_i - p_i^0) + \text{second order}$$

THE HIGH REDSHIFT WDM CUTOFF

 $\delta_{F} = F/\langle F \rangle - 1$

THE TEMPERATURE: T₀

THE BEST GUESS MODEL

This is the starting point of the MCMC likelihood estimation cosmology close to Planck values

RESULTS FOR WDM MASS

SDSS + MIKE + HIRES CONSTRAINTS

Joint likelihood analysis

SDSS data from McDonald05,06 not BOSS

CONCLUSIONS – GEOMETRY and NEUTRINOS

Constraints on the geometry of the Universe via BAO measurements of $Ly\alpha$ and cross-correlations. Small tension with Planck.

Galaxy clustering data tend to give < 0.3 eVCMB + BAO < 0.2 eV

1D Lyman- α flux power provides the tightest constraints (<0.14 eV) on total neutrino mass. Improved/checked with new methods, new data and new simulations: the result is <0.14 eV

CONCLUSIONS – NEUTRINO COSMOLOGY FUTURE

Neutrino non-linearities modelled in the matter power spectrum. correlation function, density distribution of haloes, peculiar velocities, redshift space distortions. NEW REGIME!

Forecasting for Euclid survey: 14 meV error is doable but need to model the power spectrum to higher precision (possibly subpercent) and with physical input on the scale dependence of the effect. Very conservative 20-30 meV

CONCLUSIONS – WARM DARK MATTER

High redshift Lyman- α disfavours thermal relic models with masses that are typically chosen to solve the small-scale crisis of Λ CDM

```
Models with 1 keV are ruled out at 9σ
2 keV are ruled out at 4σ
2.5 keV are ruled out at 3σ
3.3 keV are ruled out at 2σ
↓
1) free-streaming scale is 2x10<sup>8</sup>M<sub>☉</sub>/h
2) at scales k=10 h/Mpc you cannot su
```

2) at scales k=10 h/Mpc you cannot suppress more than 10% compared to ΛCDM

Of course they remain viable candidate for the Dark Matter (especially sterile neutrinos) but there are OBSERVATIONAL challenges