Phases of Strongly Interacting Matter

Wolfram Weise

ECT* Trento and Technische Universität München

Emergence of **Structures** (Hadrons, Nuclei, Neutron Stars) in **Quantum Chromodynamics** (**QCD**)

Symmetries, Scales & Symmetry Breaking Patterns

QCD Phase Diagram

- Confinement / Deconfinement Transition
- Chiral Symmetry and QCD Interface with Nuclear Physics
- New Constraints from Neutron Stars

in memoriam Professor Alfredo Molinari (1936-2014)

from **Quarks** and **Gluons** to **Nuclei** and **Neutron Stars**

ECT*

Technische Universität München

Quarks spin = 1/2		
Flavor	Approx. Mass GeV/c ²	Electric charge
U up	0.003	2/3
d down	0.005	-1/3
C charm	1.3	2/3
S strange	0.1	-1/3
t top	17 4	2/3
b bottom	4.3	-1/3

1. Introductory preview :

What do we know about the PHASES of QCD?

PHASES and STRUCTURES of QCD

PHASES and STRUCTURES of QCD - facts and visions -

Strategies PART I: Heavy-Ion Physics

High Energy Nuclear Collisions @ CERN/SPS, RHIC, LHC

Strategies PART II: Astrophysical Observations

to

Constraints on Equation of State of baryonic matter at HIGH DENSITY and LOW TEMPERATURE

Neutron Stars

Strategies PART III: Lattice QCD

$$\mathcal{L}_{\mathbf{QCD}} = \overline{\psi} \left(i \gamma_{\mu} \mathcal{D}^{\mu} - \mathbf{m} \right) \psi - \frac{1}{4} \mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}$$

Large-scale computer simulations on

EUCLIDEAN SPACE-TIME Lattices

Euclidean

time τ

Euclidean time $\hat{=}$ inverse temperature

 $au = \mathbf{1}/\mathbf{T}$

quarks on lattice sites

gluon fields on links

QCD THERMODYNAMICS

Partition function

$$\mathcal{Z} = \int [\mathbf{d}\mathcal{U}\,\mathbf{d}\psi\,\mathbf{d}\overline{\psi}]\,\mathbf{e}^{-\mathcal{S}_{\mathbf{G}}(\mathcal{U}) - \mathcal{S}_{\mathbf{q}}(\psi,\overline{\psi},\mathcal{U})}$$

Non-perturbative "condensed matter physics" of QCD

Space \vec{x}

Hierarchy of **QUARK MASSES** in **QCD**

Technische Universität München

LATTICE QCD THERMODYNAMICS: CHIRAL and DECONFINEMENT TRANSITIONS

chiral and deconfinement

crossover transitions appear to be closely connected

Technische Universität München

Spontaneously Broken CHIRAL SYMMETRY

Technische Universität München

QCD and the ORIGIN of **MASS**

HOW does the PROTON get its mass ? (NOT from Higgs !!)

Nucleon Mass from Lattice QCD

Budapest-Marseille-Wuppertal Collaboration

Science 322 (2008) 1224

Technische Universität Müncher

PIONS and **NUCLEI** in the context of **LOW-ENERGY QCD**

- CONFINEMENT of quarks and gluons in hadrons
- Spontaneously broken CHIRAL SYMMETRY

LOW-ENERGY QCD:

Effective Field Theory of weakly interacting Nambu-Goldstone Bosons (PIONS) representing QCD at (energy and momentum) scales $\mathbf{Q} << 4\pi \, \mathbf{f}_{\pi} \sim \, 1 \, \mathrm{GeV}$

CHIRAL EFFECTIVE FIELD THEORY

- Systematic framework at interface of QCD and Nuclear Physics
- Interacting systems of
 PIONS (light / fast) and NUCLEONS (heavy / slow):

$$\mathcal{L}_{eff} = \mathcal{L}_{\pi}(U, \partial U) + \mathcal{L}_{N}(\Psi_{N}, U, ...)$$

$$U(x) = \exp[i\tau_a \pi_a(x)/f_\pi]$$

Construction of Effective Lagrangian: Symmetries

NUCLEAR MATTER and QCD PHASES

- NN distance:
- energy per nucleon:
- compression modulus:

 $egin{aligned} k_F &\simeq 1.4~fm^{-1} \sim 2m_\pi \ d_{NN} &\simeq 1.8~fm \simeq 1.3~m_\pi^{-1} \ E/A &\simeq -16~MeV \ K &= (260 \pm 30)~MeV &\sim 2m_\pi \end{aligned}$

Nuclear Forces

- recent developments -

NUCLEAR INTERACTIONS from CHIRAL EFFECTIVE FIELD THEORY

Weinberg

Bedaque & van Kolck

Bernard, Epelbaum, Kaiser, Meißner; ...

Systematically organized HIERARCHY

Technische Universität München

Important pieces of the CHIRAL NUCLEON-NUCLEON INTERACTION

N. Kaiser, S. Gerstendörfer, W.W. Nucl. Phys. A 637 (1998) 395

CENTRAL ATTRACTION from **TWO-PION EXCHANGE**

Van der WAALS - like force

$$\mathbf{V_c}(\mathbf{r}) \propto -rac{\exp[-2\mathbf{m_\pi r}]}{\mathbf{r^6}} \mathbf{P}(\mathbf{m_\pi r})$$

... at intermediate and long distance

Technische Universität Müncher

CHIRAL DYNAMICS and the NUCLEAR MANY-BODY PROBLEM

N. Kaiser, S. Fritsch, W.W. (2002 - 2005)

Small energy scales:

rgy, momentum,
$$~~\mathbf{m}_{\pi},~~\mathbf{k_F}<<4\pi f_{\pi}\sim 1\,GeV$$

Technische Universität Münche

- PIONS and NUCLEONS as explicit degrees of freedom
- IN-MEDIUM CHIRAL PERTURBATION THEORY

NUCLEAR MATTER

Recent review: J.W. Holt, N. Kaiser, W.W.: Prog. Part. Nucl. Phys. 73 (2013) 35

Technische Universität München

NUCLEAR THERMODYNAMICS

S. Fritsch, N. Kaiser, W.W.: Nucl. Phys. A 750 (2005) 259

NUCLEAR LIQUID-GAS TRANSITION

from multifragmentation measurements in heavy-ion collisions

... determined almost entirely by

Technische Universität München

COLD NEUTRON MATTER

In-medium chiral effective field theory (3-loop) with resummation of short distance contact terms (large nn scattering length, $a_s = 19 \text{ fm}$)

- agreement with sophisticated many-body calculations
 - (e.g. recent Quantum Monte Carlo computations)

Technische Universität Müncher

4. Outlooks: New Constraints from NEUTRON STARS

TECHNISC UNIVERSIT DARMSTA

Neutron Star Scenarios

NEUTRON STARS and the EQUATION OF STATE of **DENSE BARYONIC MATTER**

J. Lattimer, M. Prakash: Astrophys. J. 550 (2001) 426 Phys. Reports 442 (2007) 109

Mass-Radius Relation

New constraints from 2-solar-mass NEUTRON STARS

Technische Universität München

New constraints from NEUTRON STARS

PSR J1614+2230

 $\mathbf{M} = 1.97 \pm 0.04~M_{\odot}$

ECT*

J.Antoniadis et al. Science 340 (2013) 6131

PSR J0348+0432

 $\mathbf{M} = \mathbf{2.01} \pm \mathbf{0.04} \,\, \mathrm{M_{\odot}}$

NEUTRON STAR MATTER

NEUTRON STAR MATTER

Mass - Radius Relation

In-medium Chiral Effective Field Theory Active degrees of freedom: nucleons, pions Chiral two- and three-body interactions

Technische Universität Müncher

NEUTRON STAR Equation of State

conventional nuclear vs. quark degrees of freedom

Chiral Effective Field Theory vs. Polyakov - Nambu - Jona-Lasinio model

Technische Universität München

NEUTRON STAR MATTER Equation of State

- In-medium Chiral Effective Field Theory (reproducing thermodynamics of normal nuclear matter)
- 3-flavor PNJL (chiral quark) model at high densities (incl. **strange** quarks)

Densities and Scales in Compressed Baryonic Matter

CONCLUSIONS

Systematic approach at the interface of **QCD** and the physics of **hadrons**, **nuclei** and **nuclear forces** :

Chiral Effective Field Theory

- New constraints from neutron stars for the equation-of-state of dense & cold baryonic matter :
 - Mass radius relation: stiff equation of state required ! No ultrahigh densities ($ho_{core} \lesssim 5
 ho_0$)
 - "Conventional" (non-exotic) EoS works remarkably well (nuclear effective field theory + advanced many-body methods)
- "The constraints strongly suggest that the compact objects ... are really **neutron stars** and not ... quark stars." (J.Trümper)

The End

thanks to

Nino Bratovic Thomas Hell Matthias Drews Jeremy Holt

Salvatore Fiorilla Norbert Kaiser Robert Lang Sebastian Schultess Corbinian Wellenhofer

