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1.

E
xecu

tive
S
u
m

m
ary

F
igure

1.4:
N

uclear
physics

does
play

a
pivotalrole

during
the

different
stages

in
the

evolution
of

our
universe.

In
the

field
of

nuclear
astrophysics,

basic
questions

such
as

the
origin

ofthe
chem

icalelem
ents

and
the

energy
in

start
are

addressed.
T

he
answ

ers
do

rely
heavily

on
experim

ental
inform

ation
on

the
structure

of
stable

and
exotic

nucleiand
w

here
this

inform
ation

is
not

available
on

theoreticalm
odels.

V
LT

and
the

K
eck.

H
ighlights

w
ith

significant
public

attention
w

ere
the

high
redshift

super-
nova

search
and

its
im

plication
for

the
struc-

ture
and

dynam
ics

ofthe
U

niverse
as

w
ellas

the
proof

of
oscillations

for
solar

neutrinos
on

their
w

ay
from

the
solar

core
to

earth
by

earthbound
detectors.

T
his

solution
to

the
solar

neutrino
puzzle

does
not

only
open

the
door

to
new

physics
be-

yond
the

Standard
M

odel
of

particle
physics,

it
also

confirm
s

the
predictions

of
the

solar
m

odels
including

their
nuclear-physics

input.
T

he
latter

included
the

m
easurem

ent
of

the
3H

e( 3H
e,2p) 4H

e
reaction

cross
section

at
the

G
ran

Sasso
low

-energy
underground

facility.
T

his
m

ilestone
of

nuclear
astrophysics

consti-
tutes

the
first

direct
m

easurem
ent

of
a

reaction
rate

at
stellar

energies.
To

optim
ally

exploit
this

unique
facility,

the
installation

of
a

com
-

pact
high-current

5-M
V

accelerator,
equipped

w
ith

a
highly-effi

cient
G

e
detector

array
is

ur-
gently

needed.

O
ther

highlights
ofexperim

entalnuclear
as-

trophysics
include

the
developm

ent
and

success-
ful

use
of

novel
neutron-tim

e-of-flight
facilities

at
Los

A
lam

os
and

C
E

R
N

,
w

hich
allow

to
de-

term
ine

neutron-capture
cross

sections
for

the
s-

process
w

ith
unprecedented

precision,the
high-

accuracy
m

ass
m

easurem
ents

of
m

any
unstable

nuclei
at

G
SI,

ISO
LD

E
and

G
A

N
IL,

the
de-

term
ination

of
m

ore
than

30
new

half-lives
for

neutron-rich
nuclei

on
the

r-process
path,

and
the

precision
m

easurem
ents

of
spin-isospin

re-
sponses

in
nucleiat

K
V

I,G
roningen

and
R

C
N

P,
O

saka,w
hich

are
im

portant
inputs

in
supernova

sim
ulations

and
for

supernova
neutrino

detec-
tors.A

new
era

ofnuclearastrophysics
hasstarted

w
ith

the
use

of
radioactive

ion-beam
acceler-

ators
dedicated

to
the

m
easurem

ent
of

astro-
physically

relevant
nuclear

reactions
involving

short-lived
nuclides.

T
his

field
has

been
pio-

neered
by

the
Louvain-la-N

euve
facility,

w
here

several
im

portant
low

-energy
nuclear

reactions
for

explosive
astrophysical

environm
ents

have
been

studied
in

the
last

10
years.

N
ew

installa-
tions

are
now

operational
at

Louvain-la-N
euve,

T
R

IU
M

F
,G

A
N

IL
and

at
C

E
R

N
.T

hey
w

ill
al-

low
to

determ
ine

som
e

of
the

m
ost

im
portant

reaction
rates

for
the

nuclear
netw

orks
in

no-
vae

and
X

-ray
bursters.

Im
m

ediate
upgrades

of
the

existing
facilities

in
E

urope
are

crucial
to

bridge
the

gap
until

the
second-generation

radioactive
ion-beam

facilities
becom

e
opera-

tional.
T

his
next

generation
of

radioactive
ion-

beam
facilities,

planned
and

proposed
in

E
u-

rope
(G

SI
and

E
U

R
ISO

L),in
Japan

and
in

the
U

SA
,

w
ill

then
allow

to
produce

and
experi-

m
ent

w
ith

m
ost

of
the

astrophysically
im

por-
tant

short-lived
nuclides,

prom
ising

to
rem

ove
the

m
ost

crucial
am

biguities
in

nuclear
astro-

physics
arising

from
nuclear-physics

input.

In
m

any
ofthe

astrophysicalm
odels,nuclear

theory
hasto

bridge
the

gap
betw

een
experim

en-
tal

data
and

astrophysical
applications.

H
ere,

w
e

clearly
stand

at
the

eve
of

a
new

era
as

the
required

step
can

now
be

taken
on

the
basis

of
first-principle

theoreticalm
odels

rather
than

by
em

pirical
param

eterisation
of

the
data.

T
his

should
reduce

the
uncertainties

connected
w

ith
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−5

s 10
2
s 105 y 109 y 1010 y

today

TIME 
[seconds / years]

Big Bang

quarks & gluons

hadrons
(mesons, baryons)

atomic
nuclei

atoms

stars &
supernovae

from Quarks and Gluons 
to Nuclei and Neutron Stars 
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1. Introductory  preview : 

What do we know 
about the 

PHASES  of  QCD ?
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2. The QCD Phase diagram

Before discussing calculations for the η/s ratio for confined matter, let
us present a novel form of displaying the phase diagram of QCD matter,
i.e. matter, where the mean interparticle spacing is of the order of a few
femtometers. In this case the strong interaction is the main player in the
equation of state. Rather than representing the phase diagram in terms of
temperature T and baryo-chemical potential µ we choose to plot pressure
vs. temperature. This has the advantage of a more direct comparison with
other substances such as water or liquid Helium. The results are shown in
Fig. 2.
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Fig. 2. Phase diagram of strong-interaction matter in the pressure-temperature
plane [5]. Due to relativistic effects there exists an unphysical region in which
QCD matter cannot exist in equilibrium.

The low-temperature regime is the realm of nucleonic matter, which may
undergo a first-order chiral restoration transition to chirally ordered and
superconducting quark matter at high pressure. These phases could be
realized in the interior of neutron stars. At high temperatures one encoun-
ters quark-gluon matter, whose boundary to the unphysical region (µ = 0)
is quantitatively described by lattice QCD and a free pion gas at low T .
When raising the temperature the first-order chiral transition line ends in a
chiral critical endpoint (CEP) of second order. Current and future heavy-
ion experiments are indicated as well as the chemical freeze out. The latter

          PHASES and STRUCTURES of QCD
- facts and visions -

J. Wambach, 
K. Heckmann,

M. Buballa
arXiv:1111.5475v2 [hep-ph] 

(2012)
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Strategies  PART I:    Heavy-Ion  Physics    
Heavy ion collisions at RHIC  & Quark Gluon Plasma 

initial state

pre-equilibrium

QGP and
hydrodynamic expansion

hadronization

hadronic phase
and freeze-out

x−x+

sQGP 

τ = 0

1. Ultra-relativistic nuclei (Initial sate)

2. Pre-equilibrium dynamics (Glasma)

3. Quark Gluon Plasma 

4. Hadron Gas

We lack of a unified description of the collision dynamics at all times

η = cte

τ = const

5. Detected particles

∼ 10
−23

sec

High Energy Nuclear Collisions      CERN/SPS,  RHIC, LHC    

Fast  equilibration

Analysis of RHIC and LHC data: 

hadronic
“freeze-out”
trajectory

A. Andronic et al.
Nucl. Phys.  A 772 (2006) 167

Strongly correlated 
quark-gluon matter 

Initial temperatures 
300 - 500 MeV

@



Strategies  PART II:      Astrophysical Observations    

Constraints on Equation of State of baryonic matter 
at HIGH DENSITY and LOW TEMPERATURE

neutron
matter

quark
 matter ?

from   Supernovae           to          Neutron Stars



Strategies  PART III:    Lattice QCD     

LQCD = ψ̄ (iγµD
µ
− m) ψ −

1

4
GµνG

µν

     QCD  THERMODYNAMICS 

Large-scale computer simulations on
EUCLIDEAN SPACE-TIME  Lattices

Non-perturbative  “condensed matter physics” of  QCD

τ = 1/T

=̂Euclidean time inverse temperature

quarks on lattice sites

gluon fields  on links

Partition function

Z =

∫
[dU dψ dψ̄] e−SG(U)−Sq(ψ,ψ̄,U)

CHAPTER 7. QCD ON THE LATTICE (LQCD)

7. 1. Field theories on a lattice

• Lagrangian L(Φ, ∂µΦ); Fields Φ(x), xµ
= (x0, �x ) = (t, �x ).

Φ(x) stands generically for quark or gluon fields.

• Green’s function (n-point function):

G(n)
(x1, · · · , xn) = N �0|T [Φ(x1) · · ·Φ(xn)]|0� (7.1)

• Action functional:

S[Φ] =

�
d

4xL (Φ(x), ∂µΦ(x)) (7.2)

• Path integrals:

G(n)
(x1, · · · , xn) =

�
DΦ Φ(x1) · · ·Φ(xn) eiS[Φ]

�
DΦ eiS[Φ]

(7.3)

• Goal of field theory on a lattice: perform path integrals for G(n)
on a discretized

Euclidean space-time lattice numerically.

• Field theories involve renormalization and ultraviolet regularizations.

� Regularization automatically “built-in” in lattice field theory.

• Continuum limit (a → 0).

• Infrared (“long wavelength”) cutoff ↔ finite volume V .

• Minkowski space NOT appropriate (eiS complex and potentially rapidly oscillating).

� Euclidean space: t ≡ x0 → −ix4 ≡ −iτ (τ : Euclidean time)

62
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Figure 5. Spline fits to the trace anomaly for several values of the lattice spacing aT = 1/Nτ and the result of our continuum

extrapolation (left). Note that the error bands shown here do not include the 2% scale error. The right hand panel shows

suitably normalized pressure, energy density, and entropy density as a function of the temperature. In this case the 2% scale

error is included in the error bands. The dark lines show the prediction of the HRG model. The horizontal line at 95π2/60
in the right panel corresponds to the ideal gas limit for the energy density and the vertical band marks the crossover region,

Tc = (154± 9) MeV.

find that the Nτ = 6 data lie outside the range of applica-
bility of the quadratic ansatz. The same error bands are
compared with the final continuum extrapolated result
(black band) in Fig. 5.

Having determined the final fit, we obtained the pres-
sure p/T 4 by numerically integrating the bootstrap sam-
ples for Θµµ(T ) between 130 MeV and 400 MeV using
Eq. (12). For the integration constant p0, the pressure
at T = 130 MeV, we picked a value from a normal dis-
tribution with the mean value p0/T 4

0 = 0.4391, again
taken from the HRG model, and width 0.0439, a con-
servative 10% error estimate on this HRG value. Since
the estimate of p0/T 4

0 is independent of the calculation
of Θµµ(T ), this choice effectively adds a δp0 in quadra-
ture to the errors from integrating Θµµ(T )/T 4. Knowing
Θµµ(T )/T 4 ≡ (�−3p)/T 4 and p/T 4, it is straightforward
to derive the energy density, �, and the entropy density
s = (�+ p)/T .

The final systematic error that is folded into the esti-
mates of all the thermodynamic quantities is the uncer-
tainty in the determination of the lattice scale a, and thus
the values of the temperature T used in the fits. Based
on the uncertainty analyses in the determination of the
lattice scale a (∼ 1.3%) and tuning of the ms to stay on
the LCP presented in Appendices B and C, we assigned
an overall conservative 2% uncertainty in T , which we
add linearly to the error estimates already assigned by
the bootstrap process. In practice, at each T and for
each observable, we picked the minimum and maximum
values of the 1σ bootstrap envelope in the region T ±2%.
This new envelope is then used as the final uncertainty
band for all the continuum results shown in the figures
and discussed below.

Our continuum extrapolated results for the trace
anomaly and other thermodynamic observables are

shown in Fig. 5 and the data are given in Table I. For
T < 150 MeV, the trace anomaly is well approximated
by the HRG estimate shown by the solid line in Fig. 5
(left). For T > 150 MeV, the Nτ ≥ 8 lattice results are
systematically higher than the HRG estimate as shown
in Fig. 3, and the slopes of the HRG and continuum ex-
trapolated curves start to differ as shown in Fig. 5. In
the peak region, (� − 3p)/T 4 has a maximum of about
4.05(15) at T ∼ 204 MeV. This maximal value from simu-
lations with the HISQ/tree action is significantly smaller
than our previous results with the p4 and asqtad actions
which were incorporated in the HotQCD parametrization
[23] of the EoS, as well as in the s95p parametrization of
the EoS that is frequently used in hydrodynamic models
[42].
The final continuum extrapolated estimates of the

pressure, energy density and entropy density are shown
in Fig. 5 (right) and compared with HRG predictions for
T < 170 MeV. Again, there is reasonable agreement for
T < 150 MeV. Above T = 150 MeV, HRG estimates
lie along the lower edge of the error-band of the lattice
estimates.
We can now compare our results with the results ob-

tained by the Wuppertal-Budapest Collaboration using
the stout action [26]. This comparison is shown in Fig.
6 for the trace anomaly, the pressure and the entropy
density. We find good agreement in the trace anomaly
with the stout results over the full temperature range
(130 − 400) MeV. Note, however, that above the peak
the central values with the stout action lie systemati-
cally below ours. As a result, our estimates of the pres-
sure become systematically larger for T > 200 MeV.
By T = 400 MeV, the difference between the central
values in the two calculations increases to about 6%.
The two results, however, still agree within errors. The
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S. Borsanyi et al. 
Phys. Lett. B 738 (2014) 187

A. Bazanov et al. (HotQCD collab.)
arXiv:1407.6387 [hep-lat]

(2014)

crossover
transition

(not a phase transition)

transition
temperature

Tc ! 150 − 160MeV



2. 
The Hadronic Phase:

Low-Energy QCD 
and 

Spontaneously Broken
Chiral Symmetry



Hierarchy  of  QUARK MASSES  in  QCD

0 ∞

1 GeVu,d s c

“light”  quarks “heavy”  quarks

mc ! 1.25 GeV

(µ ! 2 GeV)

mb ! 4.2 GeV

mt ! 174 GeV

LOW-ENERGY QCD:
CHIRAL EFFECTIVE
FIELD THEORY

expansion in 
and in powers of 
low momentum

Non-Relativistic QCD: 
HEAVY QUARK
EFFECTIVE THEORY

expansion in
powers of 

mq

1/mQ

mass

separation of scales

mu ! 2 − 3 MeV

mu/md ∼ 0.4 − 0.6

ms = 95 ± 5 MeV

PDG           Phys. Rev.  D 86 (2012)



 QCD with (almost) MASSLESS  u- and d-QUARKS  

        left - handed         right - handed

momentum
spinspin

pseudoscalar
isovector

scalar 
isoscalar

ψ = (u,d)

σ ↔ ψ̄ ψ

T

σ
2

+ π
2

= f
2

invariant:

Realizations of CHIRAL SYMMETRY:

Nambu-Goldstone Wigner-Weyl
〈ψ̄ψ〉 #= 0 〈ψ̄ψ〉 = 0

  at low energy /
low temperature

  at high energy /
high temperature

SU(2)R × SU(2)L

πa
↔ ψ̄ iγ5 τaψ

Low-Energy QCD :    CHIRAL  SYMMETRY

2nd order
phase

transition



Order Parameter 
of 

spontaneously broken 
Chiral Symmetry

LATTICE  QCD  THERMODYNAMICS:  
CHIRAL  and  DECONFINEMENT  TRANSITIONS

chiral and deconfinement
crossover transitions appear to be closely connected

Quark Condensate

Transition temperature and EoS from lattice QCD 2
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Figure 1. Left: Subtracted chiral condensate ∆l,s as a function of the temperature.
The gray band is the continuum result of our collaboration, obtained with the stout
action. Right: The trace anomaly normalized by T 4 as a function of T onNt = 6, 8, 10
and 12 lattices. The inset shows a comparison with the results of the Hadron Resonance
Gas model, including resonances from the Particle Data Book up to 2.5 GeV mass.

1. Introduction

The study of QCD thermodynamics is receiving increasing interest in recent years. A

systematic approach to determine the properties of the deconfinement phase transition

is through lattice QCD. Lattice simulations indicate that the transition at vanishing
chemical potential is merely an analytic crossover [1]. Some interesting quantities that

can be extracted from lattice simulations are the transition temperature Tc, the QCD

equation of state and, for small chemical potentials, the phase diagram in the µ−T plane:

we review the results on these observables that have been obtained by our collaboration

using the staggered stout action with physical light and strange quark masses, thus

ms/mud " 28 [2, 3]. For all details we refer the reader to Refs. [4, 5, 6].

2. QCD transition temperature and Equation of State

We present here the results for the chiral condensate, and extract the value of Tc

associated to this observable; for the values of Tc obtained from other observables, which

reflects the nature of the crossover transition, we refer the reader to Ref. [4]. The chiral

condensate is defined as 〈ψ̄ψ〉q = T∂ lnZ/(∂mqV ) for q=u,d,s. It is an indicator for the
remnant of the chiral transition, since it rapidly changes around Tc. We calculate the

quantity ∆l,s, which is defined as [〈ψ̄ψ〉l,T −ml/ms〈ψ̄ψ〉s,T ]/[〈ψ̄ψ〉l,0 −ml/ms〈ψ̄ψ〉s,0]

for l=u,d. Since the results at different lattice spacings are essentially on top of each

other, we connect them to lead the eye (see the left panel of Fig. 1). The value of Tc

that we obtain from the inflection point of this observable is Tc = 157(3)(3).

Next we present our results regarding the equation of state; in the right panel of
Figure 1, the T dependence of the interaction measure is shown for the 2 + 1 flavor

system. We have results at four different lattice spacings. Results show essentially

no dependence on “a”, they all lie on top of each other. Only the coarsest Nt = 6

lattice shows some deviation around ∼ 300 MeV. On the same figure, we zoom in to

S. Borsanyi et al.
JHEP 1011 (2010) 077

〈ψ̄ψ〉T
〈ψ̄ψ〉T=0

temperature
Tc ! 155MeV

crossover
transition temperature
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3.3 Numerical analysis and contact with lattice QCD
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Figure 3.9: Best-fit curves based on the formula at order ε3 in manifestly covariant SSE,
with cA = 1.5 as input parameter [118]. For comparison, we plot also the
O(p4) 68% error band of Fig.3.8, where the ∆ (1232) is not an explicit degree
of freedom.

The parameter ∆ has been chosen equal either to 271.1 or 293 MeV. The former value
corresponds to the real part of the ∆ (1232) pole in the complex W -plane, the latter to
the Breit-Wigner mass of the ∆ (1232) resonance, see Sec.2.9.2. We identified ∆ as the
physical delta-nucleon mass splitting since lattice data show an almost parallel running
of MN and M∆ with mπ [113].

Table 3.3: Fit results for MN (mπ) at leading-one-loop order, including explicit ∆ (1232)
degrees of freedom. Here λ = 1 GeV.

M0 [GeV] c1 [GeV−1] ẽr
1/ ėr

1(1 GeV) [GeV−3] χ2/d.o.f.

Fit delta I 0.894 ± 0.004 −0.76 ± 0.05 4.5 ± 0.1 0.19
Fit delta II 0.873 ± 0.004 −1.08 ± 0.05 2.8 ± 0.2 0.43
Fit delta IIa 0.881 ± 0.004 −0.95 ± 0.06 2.0 ± 0.2 0.34

We fix the regularization scale λ = 1 GeV. Both Eqs.(3.41) and (3.44) are scale
independent.

The O(ε3) non-relativistic SSE result cannot provide a satisfactory interpolation be-
tween lattice data and physical point. Compared to O(p3) HBChPT, the inclusion of

75

Lattice QCD

physical point

QCD and the ORIGIN of MASS
HOW does the PROTON get its mass ?    (NOT from Higgs !!)

answer: 
mostly  GLUON Dynamics 

E = m c2

u + u + d = proton

M. Procura et al. 
Phys. Rev. D73 (2006) 114510

mu ! 3 MeV md ! 5 MeV

3 + 3 + 5 != 938 !

1 fm 10 fm 20km

u

u
d

chiral
perturbation 
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Localization 
(confinement)

of quarks in the nucleon

quark mass    mq
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Ab-initio Determination of Light Hadron Masses

S. Dürr1, Z. Fodor1,2,3, J. Frison4, C. Hoelbling2,3,4,
R. Hoffmann2, S. D. Katz2,3, S. Krieg2, T. Kurth2,

L. Lellouch4, T. Lippert2,5, K.K. Szabo2, G. Vulvert4

1NIC, DESY Zeuthen, D-15738 Zeuthen and FZ Jülich, D-52425 Jülich, Germany.
2Bergische Universität Wuppertal, Gaussstr. 20, D-42119 Wuppertal, Germany.

3Institute for Theoretical Physics, Eötvös University, H-1117 Budapest, Hungary.
4Centre de Physique Théorique∗, Case 907, Campus de Luminy, F-13288 Marseille Cedex 9, France.

5Jülich Supercomputing Centre, FZ Jülich, D-52425 Jülich, Germany.

Budapest-Marseille-Wuppertal Collaboration

More than 99% of the mass of the visible universe is made up of protons and
neutrons. Both particles are much heavier than their quark and gluon con-
stituents, and the Standard Model of particle physics should explain this dif-
ference. We present a full ab-initio calculation of the masses of protons, neu-
trons and other light hadrons, using lattice quantum chromodynamics. Pion
masses down to 190 mega electronvolts are used to extrapolate to the physi-
cal point with lattice sizes of approximately four times the inverse pion mass.
Three lattice spacings are used for a continuum extrapolation. Our results
completely agree with experimental observations and represent a quantitative
confirmation of this aspect of the Standard Model with fully controlled uncer-
tainties.

The Standard Model of particle physics predicts a cosmological, quantum chromodynamics
(QCD)–related smooth transition between a high-temparature phase dominated by quarks and
gluons and a low-temperature phase dominated by hadrons. The very large energy densities at
the high temperatures of the early universe have essentially disappeared through expansion and
cooling. Nevertheless, a fraction of this energy is carried today by quarks and gluons, which are

∗CPT is “UMR 6207 du CNRS et des universités d’Aix-Marseille I, d’Aix-Marseille II et du Sud Toulon-Var,
affiliée à la FRUMAM”.

1

Nucleon Mass from Lattice QCD

Science 322 (2008) 1224-1227
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Figure 2: Pion mass dependence of the nucleon (N) and Ω for all three values of the lattice
spacing. (A): masses normalized byMΞ, evaluated at the corresponding simulation points. (B):
masses in physical units. The scale in this case is set by MΞ at the physical point. Triangles
on dotted lines correspond to a≈0.125 fm, squares on dashed lines to a≈0.085 fm and circles
on solid lines to a≈0.065 fm. The points were obtained by interpolating the lattice results
to the physical ms (defined by setting 2M2

K-M2
π to its physical value). The curves are the

corresponding fits. The crosses are the continuum extrapolated values in the physical pion mass
limit. The lattice-spacing dependence of the results is barely significant statistically despite
the factor of 3.7 separating the squares of the largest (a≈0.125 fm) and smallest (a≈0.065 fm)
lattice spacings. The χ2/degrees of freedom values of the fits in (A) are 9.46/14 (Ω) and 7.10/14
(N), whereas those of the fits in (B) are 10.6/14 (Ω) and 9.33/14 (N). All data points represent
mean ± SEM.
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PIONS  and  NUCLEI  
in the context of  LOW-ENERGY QCD

LOW-ENERGY QCD:    

Effective  Field  Theory  of  weakly interacting 

Nambu-Goldstone Bosons (PIONS) 

representing QCD at (energy and momentum) scales

CONFINEMENT of quarks and gluons in hadrons

Spontaneously broken CHIRAL SYMMETRY

Q << 4π fπ ∼ 1GeV



Interacting systems of 
PIONS  (light / fast)  and  NUCLEONS  (heavy / slow):   

+ + . . .

π πN N

+

π π

Leff = Lπ(U, ∂U) + LN (ΨN , U, ...)

U(x) = exp[iτaπa(x)/fπ]

CHIRAL  EFFECTIVE  FIELD  THEORY

Construction of Effective Lagrangian: Symmetries
short

distance
dynamics:

contact terms

Systematic framework at interface of QCD and Nuclear Physics
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 THERMODYNAMICS
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NUCLEAR MATTER   and  QCD PHASES

momentum scale:
Fermi momentum 

?

?

kF ! 1.4 fm
−1

∼ 2mπ

NN distance:  dNN ! 1.8 fm ! 1.3 m
−1

π

Scales in N = Z nuclear matter:

energy per nucleon:  E/A ! −16 MeV

compression modulus: K = (260 ± 30) MeV∼ 2mπ



PTEP 2012, 01A105 S. Aoki et al.

Fig. 8. (Left) The multi-Gaussian fit of the central potential VC(r) with NGauss = 5. (Right) The scattering
phase in 1S0 channel in the laboratory frame obtained from the lattice NN potential, together with experimental
data [38].

We solve the Schrödinger equation in the 1S0 channel with this fitted potential VC(r), in order to
calculate the scattering phase shift. Figure 8 (right) shows the scattering phase δ(k) in the laboratory
frame, together with the experimental data [38] for a comparison. A qualitative feature of the experi-
mental data is well reproduced by the lattice potential, though the strength is weaker, most likely due
to the heavier pion mass, mπ ! 701MeV. The scattering length obtained from the derivative of the
phase shift at k = 0 becomes a(1S0) = limk→0 tan δ(k)/k = 1.6(1.1) fm, which is compared to the
experimental value aexp(1S0) ! 20 fm.

4.5. Nuclear force in the odd parity sector and the spin-orbit force in full QCD
In this subsection, we consider the potentials in odd parity sectors. Together with nuclear forces
in even parity sectors, information on odd parity sectors is necessary for studying many-nucleon
systems with Schrödinger equations. In particular, we are interested in the spin-orbit (LS) force,
which gives rise to part of the spin-orbit coupling in the average single-particle potential of nuclei.
It is also expected to induce superfluidity in neutron stars by providing an attraction between two
neutrons in the 3P2 channel [13].
The LS force appear at the NLO of the derivative expansion as

[H0 + VC(r)(S,I ) + VT (r)S12 + VLS(r)L · S]ϕW (r; J−, I ) = EkϕW (r; J−, I ) (4.3)

To obtain the three unknown potentials, VC , VT , and VLS , we need three independent NBS wave
functions. We therefore generalize the two-nucleon source for odd parity sectors, by imposing a
momentum on the composite nucleon fields as

Jαβ(t0; f (i)) ≡ Nα(t0; f (i))Nβ(t0; f (i)∗) for i = ±1, ±2, ±3, (4.4)

where N denotes a composite nucleon source field carrying a momentum,

Nα(t0; f (i)) ≡
∑

x1,x2,x3
εabc(uTa (x1)Cγ5db(x2))qc,α(x3) f (i)(x3), (4.5)

with f (± j)(x) = exp[±2π i x j/L]. The star “*” in the r.h.s. of Eq. (4.4) represents the complex con-
jugation, which is used to invert the direction of the plane wave. A cubic group analysis shows that the
two-nucleon source Eq. (4.4) contains the orbital contribution A+

1 ⊕ E+ ⊕ T−
1 , whose main com-

ponents are S-, D-, and P-waves, respectively. Thus the two-nucleon source Eq. (4.4) covers all the
two-nucleon channels with J ≤ 2.
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NUCLEAR  INTERACTIONS  from
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PIONS  and  NUCLEONS  as explicit degrees of freedom

  pion exchange processes in presence of filled Fermi sea

π
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   IN-MEDIUM CHIRAL PERTURBATION THEORY
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short-distance dynamics: 
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Small 
scales:

contact interactions

N. Kaiser,  S. Fritsch,  W. W.  (2002 - 2005) 

CHIRAL DYNAMICS and the 
NUCLEAR MANY-BODY PROBLEM
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mπ, kF << 4πfπ ∼ 1GeVenergy, momentum,
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essentially an analytical calculation

one single term linear in ρ adjusted
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Figure 1. Left: Equation of State of nuclear matter [1]. Right: measured Temperature-Energy
correlation (caloric curve) [3].

confirmed this observation [4]. The measured value of the saturation temperature changes
with the system charge indicating that Coulomb energy can modify the onset of the phase
transition [5].

Together with the flattening of the caloric curves [3], also the sudden opening of the
high fragment multiplicity channel, the onset of collective expansion, the enhanced pro-
duction of equal mass fragments [6], the abnormally high partial energy fluctuations [7],
the bimodal distribution of exclusive observables [8], and the finite size and Fisher scal-
ings [9,10], have all been related to the occurrence of a phase transition.

To contribute to this program, in this work we present statistical analyses of fragment
observables performed with different reactions: from peripheral 35 A MeV Au + Au
collisions to central events from 25 A MeV Au + C, 25 and 35 A MeV Au + Cu and
35 A MeV Au + Au collisions [10]. Data were collected at the K1200-NSCL Cyclotron
at MSU with the MULTICS-MINIBALL apparatus. Almost complete events have been
selected with a constant value for the collected charge (about 90% of the total charge [10]).

2. GLOBAL FRAGMENT OBSERVABLES

Nuclear transport models predict that after the projectile and target touch themselves, a
fast compression stage (≈ 20 fm/c) starts and light particles are emitted (pre-equilibrium
emission). The system subsequently expands, correlations develop, and after a few tens of
fm/c surfaces appear inside the inhomogeneous medium. Once the fragment surfaces are
separated by a distance overcoming the nuclear interaction range, inter-fragment interac-
tions are inhibited and the chemical and energetic fragment content is fixed (freeze-out
stage). These fragments are typically not in their ground state, and they undergo a slow
light particles decay in vacuum, in some hundreds of fm/c. Finally, after a time of the
order of nanoseconds ≈ 1014 fm/c, the final (cold) products impinge on the detecting
system, keeping the same identity reached after the secondary decays.

To perform thermodynamical analyses, data must be selected such as to isolate events
keeping a negligible memory of the entrance channel dynamics. This can be verified by
checking that for a given source the fragmentation pattern is determined by the average
size, charge, energy and freeze-out volume solely, independent of the way the source has

M. D’Agostino et al. / Nuclear Physics A 749 (2005) 55c–64c56c

NUCLEAR  LIQUID-GAS  TRANSITION

from multifragmentation measurements in heavy-ion collisions

THe−Li [MeV]

〈E〉

〈A〉
[MeV]

J. Pochodzalla et al.
Phys. Rev. Lett. 75 (1995) 1040

M. D’Agostino et al.
Nucl. Phys.  A 749 (2005) 55
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FIG. 2. The equation of state for different proton fractions x at van-
ishing temperature. The dashed curve denotes the absolute minimum
of the energy per particle. The dotted line results from a Maxwell
construction.
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FIG. 3. The liquid-gas coexistence regions for different proton frac-
tions x.

at non-vanishing density, which can be obtained in a Maxwell
construction from the energy per particle, as depicted by the
dotted line in Fig. 2 for x = 0.1. Finally, for x smaller than
a critical value of x = 0.045 the energy per particle is rais-
ing monotonously as a function of density. There is no longer
a second minimum and the coexistence region vanishes alto-
gether as is seen in Fig. 3.

If the temperature is increased, the phase coexistence re-
gion melts until it disappears at a certain x-dependent crit-
ical temperature, which is characterized by a second-order
critical endpoint. From the behavior of the coexistence re-
gions one can read off the critical endpoint for symmetric
matter, which is located at a temperature T = 18.3 MeV and
a critical density n = 0.053 fm−3. These values are in ex-
cellent agreement with analyses of compound nuclear reac-
tions and multifragmentation experiments, which give criti-
cal temperatures of T = 17.9± 0.4 MeV and critical densi-
ties ρ = 0.06± 0.01 fm−3 [40, 41]. The fate of the critical
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FIG. 4. The equation of state for pure neutron matter with
Esym = 32 MeV. The gray band shows QMC results [11] with
32.0 MeV ≤ Esym ≤ 33.7 MeV
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FIG. 5. The equation of state for pure neutron matter. The gray
band are our results with 29 MeV ≤ Esym ≤ 33 MeV. For reference
predictions from ChEFT (full line, [5]), QMC based on realistic po-
tentials (dashed, [39]), QMC based on chiral potentials (dotted, [13])
as well as the Akmal-Pandharipande-Ravenhall EoS (dashed-dotted,
[28]) are shown.

endpoint as the proton fraction x is varied, is indicated by the
dotted curve. We note that our idealized model ignores surface
effects as well as Coulomb repulsion. In realistic scenarios at
low densities the effects of light clusters are not taken into ac-
count. A study in the framework of relativistic mean field and
microscopic quantum statistical models showed a moderate
influence on the position of the critical endpoint [42].

We want to study in more detail the equation of state for
pure neutron matter in comparison with the literature. First
the coupling Gρ is fixed to reproduce Esym = 32 MeV. The
L parameter corresponding to the slope of the symmetry en-
ergy as defined in Eq. (15) is then L = 66.3 MeV, close to the
empirical value 40 MeV ≤ L ≤ 62 MeV [33].

In Fig. 4 the energy per particle is shown as a function of
density (black line). In comparison, results obtained in a quan-
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  New constraints  from  NEUTRON  STARS

M = 2.01 ± 0.04

Many physically motivated extensions to general relativity (GR) predict sig-
nificant deviations in the properties of spacetime surrounding massive neu-
tron stars. We report the measurement of a 2.01±0.04 solar mass (M⊙) pul-
sar in a 2.46-hr orbit with a 0.172±0.003 M⊙ white dwarf. The high pulsar
mass and the compact orbit make this system a sensitive laboratory of a pre-
viously untested strong-field gravity regime. Thus far, the observed orbital
decay agrees with GR, supporting its validity even for the extreme conditions
present in the system. The resulting constraints on deviations support the use
of GR-based templates for ground-based gravitational wave detectors. Addi-
tionally, the system strengthens recent constraints on the properties of dense
matter and provides insight to binary stellar astrophysics and pulsar recycling.

Neutron stars (NSs) with masses above 1.8 M⊙ manifested as radio pulsars are valuable
probes of fundamental physics in extreme conditions unique in the observable Universe and
inaccessible to terrestrial experiments. Their high masses are directly linked to the equation-
of-state (EOS) of matter at supra-nuclear densities (1, 2) and constrain the lower mass limit
for production of astrophysical black holes (BHs). Furthermore, they possess extreme internal
gravitational fields which result in gravitational binding energies substantially higher than those
found in more common, 1.4 M⊙ NSs. Modifications to GR, often motivated by the desire for
a unified model of the four fundamental forces, can generally imprint measurable signatures in
gravitational waves (GWs) radiated by systems containing such objects, even if deviations from
GR vanish in the Solar System and in less massive NSs (3–5).

However, the most massive NSs known today reside in long-period binaries or other systems
unsuitable for GW radiation tests. Identifying a massive NS in a compact, relativistic binary
is thus of key importance for understanding gravity-matter coupling under extreme conditions.
Furthermore, the existence of a massive NS in a relativistic orbit can also be used to test current
knowledge of close binary evolution.

Results
PSR J0348+0432 & optical observations of its companion PSR J0348+0432, a pulsar spin-
ning at 39 ms in a 2.46-hr orbit with a low-mass companion, was detected by a recent sur-
vey (6, 7) conducted with the Robert C. Byrd Green Bank Telescope (GBT). Initial timing ob-
servations of the binary yielded an accurate astrometric position, which allowed us to identify
its optical counterpart in the Sloan Digital Sky Survey (SDSS) archive (8). The colors and flux
of the counterpart are consistent with a low-mass white dwarf (WD) with a helium core at a dis-
tance of d ∼ 2.1 kpc. Its relatively high apparent brightness (g� = 20.71 ± 0.03 mag) allowed us
to resolve its spectrum using the Apache Point Optical Telescope. These observations revealed
deep Hydrogen lines, typical of low-mass WDs, confirming our preliminary identification. The
radial velocities of the WD mirrored that of PSR J0348+0432, also verifying that the two stars
are gravitationally bound.

2

PSR J0348+0432

P.B. Demorest et al. 
Nature 467 (2010) 1081

Shapiro delay measurement

Text

PSR J1614+2230

Many physically motivated extensions to general relativity (GR) predict sig-
nificant deviations in the properties of spacetime surrounding massive neu-
tron stars. We report the measurement of a 2.01±0.04 solar mass (M⊙) pul-
sar in a 2.46-hr orbit with a 0.172±0.003 M⊙ white dwarf. The high pulsar
mass and the compact orbit make this system a sensitive laboratory of a pre-
viously untested strong-field gravity regime. Thus far, the observed orbital
decay agrees with GR, supporting its validity even for the extreme conditions
present in the system. The resulting constraints on deviations support the use
of GR-based templates for ground-based gravitational wave detectors. Addi-
tionally, the system strengthens recent constraints on the properties of dense
matter and provides insight to binary stellar astrophysics and pulsar recycling.

Neutron stars (NSs) with masses above 1.8 M⊙ manifested as radio pulsars are valuable
probes of fundamental physics in extreme conditions unique in the observable Universe and
inaccessible to terrestrial experiments. Their high masses are directly linked to the equation-
of-state (EOS) of matter at supra-nuclear densities (1, 2) and constrain the lower mass limit
for production of astrophysical black holes (BHs). Furthermore, they possess extreme internal
gravitational fields which result in gravitational binding energies substantially higher than those
found in more common, 1.4 M⊙ NSs. Modifications to GR, often motivated by the desire for
a unified model of the four fundamental forces, can generally imprint measurable signatures in
gravitational waves (GWs) radiated by systems containing such objects, even if deviations from
GR vanish in the Solar System and in less massive NSs (3–5).

However, the most massive NSs known today reside in long-period binaries or other systems
unsuitable for GW radiation tests. Identifying a massive NS in a compact, relativistic binary
is thus of key importance for understanding gravity-matter coupling under extreme conditions.
Furthermore, the existence of a massive NS in a relativistic orbit can also be used to test current
knowledge of close binary evolution.

Results
PSR J0348+0432 & optical observations of its companion PSR J0348+0432, a pulsar spin-
ning at 39 ms in a 2.46-hr orbit with a low-mass companion, was detected by a recent sur-
vey (6, 7) conducted with the Robert C. Byrd Green Bank Telescope (GBT). Initial timing ob-
servations of the binary yielded an accurate astrometric position, which allowed us to identify
its optical counterpart in the Sloan Digital Sky Survey (SDSS) archive (8). The colors and flux
of the counterpart are consistent with a low-mass white dwarf (WD) with a helium core at a dis-
tance of d ∼ 2.1 kpc. Its relatively high apparent brightness (g� = 20.71 ± 0.03 mag) allowed us
to resolve its spectrum using the Apache Point Optical Telescope. These observations revealed
deep Hydrogen lines, typical of low-mass WDs, confirming our preliminary identification. The
radial velocities of the WD mirrored that of PSR J0348+0432, also verifying that the two stars
are gravitationally bound.
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Fig. 9.— The upper panels give the probability distributions for the mass versus radius curves implied by
the data, and the solid (dotted) contour lines show the 2-σ (1-σ) contours implied by the data. The lower
panes summarize the 2-σ probability distributions for the 7 objects considered in the analysis. The left
panels show results under the assumption rph = R, and the right panes show results assuming rph ! R. The
dashed line in the upper left is the limit from causality. The dotted curve in the lower right of each panel
represents the mass-shedding limit for neutron stars rotating at 716 Hz.
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Constraints from neutron star observables

“Exotic” equations of state ruled out ?
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NEUTRON  STAR  MATTER
Mass - Radius Relation

In-medium Chiral Effective Field Theory
Active degrees of freedom: nucleons, pions
Chiral two- and three-body interactions
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CONCLUSIONS

New constraints from neutron stars for the equation-of-state 
of dense & cold baryonic matter : 

Mass - radius relation:  stiff equation of state required ! 
No ultrahigh densities (                    )

“Conventional” (non-exotic)  EoS  works remarkably well
 (nuclear effective field theory + advanced many-body methods)

“The constraints strongly suggest that the compact objects . . . are 
  really neutron stars and not . . . quark stars.”  ( J. Trümper)

Systematic approach at the interface of QCD and the physics of 
hadrons, nuclei and nuclear forces :

Chiral Effective Field Theory

!core ! 5 !0
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