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What?

Strong nuclear interactions under extreme conditions

[N. Cabibbo and G. Parisi, 1975], [J. C. Collins and M. J. Perry, 1975]
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Why?

Adapted from [Z. Weiner, 2010]
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Why?

An important test of QCD, one of the building blocks of the Standard Model

Temperatures & 200 MeV realized in nature until about 10−6 s after the Big Bang; cooling
rate of early Universe depends on QCD equation of state (EoS)

Cold and dense QCD matter probably exists in compact stars

The quark-gluon plasma (QGP) has very peculiar properties [B. Müller, 2013]

Connections to seemingly distant physical systems: superfluids, ultracold atoms, fermionic
condensed matter systems, black holes, . . . [E. Shuryak, 2009]

Very rich physics, involving several non-trivial theoretical problems

The focus of a large, successful and long-lasting experimental programme (BNL, LHC, GSI,
JINR) through heavy-ion collisions
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The focus of a large, successful and long-lasting experimental programme (BNL, LHC, GSI,
JINR) through heavy-ion collisions: The quark-gluon plasma is here to stay
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How?

A minimal summary of experimental QGP production — The stages

1 Heavy nuclei (Au, Pb) accelerated to ultra-relativistic energies; initial, “cold nuclear matter”
conditions modelled as a color-glass-condensate (CGC)

2 Collision (central/peripheral); formation of a “glasma”

3 Thermalization: the QGP is formed

4 Hydrodynamic expansion governed by EoS and transport coefficients

5 Hadronization

6 Freeze-out; flight to detectors
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A minimal summary of experimental QGP production — Observations and challenges for theorists

Elliptic flow [ALICE Collaboration, 2010]

Photon and dilepton spectra [PHENIX Collaboration, 2010]

Quarkonium melting [CMS Collaboration, 2012]

Strangeness enhancement [STAR Collaboration, 2009]

Jet quenching [CMS Collaboration, 2012]
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Basic ideas

Regularize the QCD path integrals by discretizing the theory on a Euclidean lattice of spacing a
[K. G. Wilson, 1974]
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Basic ideas

Regularize the QCD path integrals by discretizing the theory on a Euclidean lattice of spacing a
[K. G. Wilson, 1974]

Define gauge and matter fields on lattice elements, build a gauge-invariant lattice action and
observables

S = −
1

g2

∑
2

Tr(U2 + U†2) +
∑
x,y,f

a4ψ̄f (x)M f
x,yψf (y)

M f
x,y = mδx,y −

1

2a

∑
µ

[
(r − γµ)Uµ(x)δx+aµ̂,y + (r + γµ)U†µ(y)δx−aµ̂,y

]
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Regularize the QCD path integrals by discretizing the theory on a Euclidean lattice of spacing a
[K. G. Wilson, 1974]

Define gauge and matter fields on lattice elements, build a gauge-invariant lattice action and
observables

Continuum QCD action recovered for a→ 0

A gauge-invariant, non-perturbative regularization

Suitable for numerical simulation: Sample configuration space according to a statistical weight
proportional to exp(−S), compute expectation values

〈O〉 =

∫ ∏
dψ(x)dψ̄(x)

∏
dUµ(x)O exp(−S)∫ ∏

dψ(x)dψ̄(x)
∏

dUµ(x) exp(−S)
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Basic ideas

Regularize the QCD path integrals by discretizing the theory on a Euclidean lattice of spacing a
[K. G. Wilson, 1974]

Define gauge and matter fields on lattice elements, build a gauge-invariant lattice action and
observables

Continuum QCD action recovered for a→ 0

A gauge-invariant, non-perturbative regularization

Suitable for numerical simulation: Sample configuration space according to a statistical weight
proportional to exp(−S), compute expectation values

Note: Importance sampling made possible by real positive statistical weight
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Debunking some common misconceptions

“Lattice QCD is only an approximation of QCD”

“The results depend on the details of your discretization”

“You can never recover the correct rotational and translational symmetries of the original
continuum theory”

“You always have undesired additional quark species (doublers)”

“It only works / it is only defined at strong coupling”

“It is numerically untractable: you can never be able to deal with those large Dirac operators
/ you are bound to neglect quark dynamics (quenched approximation)”

“It is dumb: you only get numbers, you don’t learn anything”
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continuum theory”— False

“You always have undesired additional quark species (doublers)”— False

“It only works / it is only defined at strong coupling”— False

“It is numerically untractable: you can never be able to deal with those large Dirac operators
/ you are bound to neglect quark dynamics (quenched approximation)”— False

I Moore’s law and algorithmic progress came to the rescue: for standard lattice QCD computations,
quenched calculations are now obsolete
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Debunking some common misconceptions

“Lattice QCD is only an approximation of QCD”— False

“The results depend on the details of your discretization”— False

“You can never recover the correct rotational and translational symmetries of the original
continuum theory”— False

“You always have undesired additional quark species (doublers)”— False

“It only works / it is only defined at strong coupling”— False

“It is numerically untractable: you can never be able to deal with those large Dirac operators
/ you are bound to neglect quark dynamics (quenched approximation)”— False

“It is dumb: you only get numbers, you don’t learn anything”
I I’ll try to prove you wrong in the rest of this talk
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Examples of applications

Some lattice QCD results at zero temperature

Hadron spectrum

ρ K K
∗ η φ N Λ Σ Ξ ∆ Σ∗ Ξ∗ Ωπ η′ ω0

500

1000

1500

2000

2500

(M
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)

© 2012, 2013, 2014 Andreas Kronfeld/Fermi Natl Accelerator Lab.

Adapted from [A. Kronfeld, 2012]

π-, K -, D- and B-meson matrix elements
Light quark masses (combining lattice QCD and chiral extrapolation)
αs (combining lattice QCD and perturbation theory)
K → ππ transitions
Nonleptonic B and D decays
and more . . .
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Outline

1 Introduction and motivation

2 Lattice QCD generalities

3 Some lattice results in finite-temperature QCD

4 A look at the future
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Thermodynamics

Equation of state in QCD
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lattice continuum limit SB

[S. Borsányi et al., 2013]

See also [A. Bazavov et al., 2012] and [T. Bhattacharya et al., 2014]
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Thermodynamics

Equation of state in QCD and in QCD-like theories: the large-N limit
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Thermodynamics

Equation of state in QCD and in QCD-like theories: the large-N limit

QCD at large N: Why bother?

The large-N limit of QCD (at fixed λ = g 2N) has interesting implications [G. ’t Hooft, 1974]

It plays a crucial rôle in the holographic gauge/string duality [J. Maldacena, 1998]

Important applications at finite temperature [J. Casalderrey-Solana et al., 2014]

What can the lattice say? [M. P., 2012], [B. Lucini and M. P., 2013]
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The large-N limit of QCD (at fixed λ = g 2N) has interesting implications [G. ’t Hooft, 1974]
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= 4πgs
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Thermodynamics

Equation of state in QCD and in QCD-like theories: the large-N limit
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improved holographic QCD model

[M. P., 2009]
See also:

I Polyakov loops [A. Mykkänen, K. Rummukainen and M. P., 2012] (relevant for phenomenological
models [C. Ratti, M. A. Thaler and W. Wiese, 2006], [H. Hansen et al., 2007])

I EoS in G2 gauge theory [M. Caselle et al., 2014]
I EoS in 2+1 dimensions [M. Caselle et al., 2011], [M. Caselle et al., 2012]
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Thermodynamics

Equation of state in QCD and in QCD-like theories

Dependence on (electro)magnetic fields: relevant
for electro-weak phase transition in early Universe / peripheral heavy-ion collisions / magnetars

[G. S. Bali et al., 2011]
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Thermodynamics

Equation of state in QCD and in QCD-like theories

Dependence on (electro)magnetic fields

Freeze-out conditions from fluctuations of conserved charges (baryon number B, electric
charge Q, strangeness S) [F. Karsch, 2012]
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[S. Borsányi et al., 2011]

See also [A. Bazavov et al., 2012]

Consistent determination of freeze-out conditions: Tfr = 144(10) MeV, µB
fr = 102(6) MeV at

RHIC (STAR,
√

s = 39 GeV) [S. Borsányi et al., 2014]

Comparison with hadron resonance gas model [P. Alba et al., 2014] and with statistical
hadronization model [A. Andronic, P. Braun-Munzinger and J. Stachel, 2009]
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Quarkonium melting

A QGP “thermometer” [T. Matsui and H. Satz, 1986]
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Quarkonium melting

A QGP “thermometer” [T. Matsui and H. Satz, 1986]

General strategy for the lattice computation:

Heavy quarks are, well, heavy

Compute correlation functions of sources with desired quantum numbers;
GE(τ) '

∫∞
−2M

dω
2π

exp(−ωτ)ρ(ω)

Invert to extract spectral function ρ(ω)
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GE(τ) '

∫∞
−2M

dω
2π

exp(−ωτ)ρ(ω)

Invert to extract spectral function ρ(ω)
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Bottomonium excitation melting [G. Aarts et al., 2011]
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Transport coefficients

Describe QGP response to long-wavelength / low-frequency perturbations in energy and
momentum density and other conserved charges [H. B. Meyer, 2011]
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Transport coefficients

Describe QGP response to long-wavelength / low-frequency perturbations in energy and
momentum density and other conserved charges [H. B. Meyer, 2011]

Example: Shear (η) and bulk (ζ) viscosities [P. Romatschke, 2010]

Tµν = (ε+ p)uµuν + pgµν − PµiPνj

[
η

(
∂i uj + ∂j ui −

2

3
gij∂k uk

)
+ ζgij∂k uk

]
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Transport coefficients

Describe QGP response to long-wavelength / low-frequency perturbations in energy and
momentum density and other conserved charges [H. B. Meyer, 2011]

Difficult to access on Euclidean lattice ⇒ Indirectly reconstructed from Kubo formulae
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Transport coefficients

Describe QGP response to long-wavelength / low-frequency perturbations in energy and
momentum density and other conserved charges [H. B. Meyer, 2011]

Difficult to access on Euclidean lattice ⇒ Indirectly reconstructed from Kubo formulae

Example: Shear viscosity

η = π lim
ω→0

lim
k→0

ρ(ω, k)

ω

with ρ the spectral function, related to a suitable (e.g. Tµν) Euclidean correlator via

GE(t, k) =

∫ ∞
0

dω ρ(ω, k)
cosh

[
ω(t − 1

2T
)
]

sinh
(
ω

2T

)
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Transport coefficients

Describe QGP response to long-wavelength / low-frequency perturbations in energy and
momentum density and other conserved charges [H. B. Meyer, 2011]

Difficult to access on Euclidean lattice ⇒ Indirectly reconstructed from Kubo formulae

Numerically very challenging
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Describe QGP response to long-wavelength / low-frequency perturbations in energy and
momentum density and other conserved charges [H. B. Meyer, 2011]

Difficult to access on Euclidean lattice ⇒ Indirectly reconstructed from Kubo formulae

Numerically very challenging
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Analytical guidance e.g. from holography? [G. S. Bali et al., in progress]
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Jet quenching

A hard quark moving through the QGP: average momentum broadening described by jet
quenching parameter q̂

q̂ =
〈p2
⊥〉
L

=

∫
d2p⊥
(2π)2

p2
⊥C(p⊥)
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Jet quenching

A hard quark moving through the QGP: average momentum broadening described by jet
quenching parameter q̂

C(p⊥), the differential parton-plasma constituents collision rate, related to two-point correlator of
light-cone Wilson lines
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Jet quenching

A hard quark moving through the QGP: average momentum broadening described by jet
quenching parameter q̂

C(p⊥), the differential parton-plasma constituents collision rate, related to two-point correlator of
light-cone Wilson lines

Our strategy [M. P., K. Rummukainen and A. Schäfer, 2014]: Compute non-perturbative soft
contribution to q̂ from a dimensionally reduced effective theory on the lattice—exact for soft
modes [S. Caron-Huot, 2009], [M. Laine, 2012]
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Jet quenching

A hard quark moving through the QGP: average momentum broadening described by jet
quenching parameter q̂

C(p⊥), the differential parton-plasma constituents collision rate, related to two-point correlator of
light-cone Wilson lines

Our strategy [M. P., K. Rummukainen and A. Schäfer, 2014]: Compute non-perturbative soft
contribution to q̂ from a dimensionally reduced effective theory on the lattice—exact for soft
modes [S. Caron-Huot, 2009], [M. Laine, 2012]

Direct access to collision kernel in coordinate space
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C(p⊥), the differential parton-plasma constituents collision rate, related to two-point correlator of
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Our strategy [M. P., K. Rummukainen and A. Schäfer, 2014]: Compute non-perturbative soft
contribution to q̂ from a dimensionally reduced effective theory on the lattice—exact for soft
modes [S. Caron-Huot, 2009], [M. Laine, 2012]

Direct access to collision kernel in coordinate space

Evidence for rather large non-perturbative effects: q̂ ' 6 GeV2/fm at RHIC
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Jet quenching

A hard quark moving through the QGP: average momentum broadening described by jet
quenching parameter q̂

C(p⊥), the differential parton-plasma constituents collision rate, related to two-point correlator of
light-cone Wilson lines

Our strategy [M. P., K. Rummukainen and A. Schäfer, 2014]: Compute non-perturbative soft
contribution to q̂ from a dimensionally reduced effective theory on the lattice—exact for soft
modes [S. Caron-Huot, 2009], [M. Laine, 2012]

Direct access to collision kernel in coordinate space

Evidence for rather large non-perturbative effects: q̂ ' 6 GeV2/fm at RHIC

Direct relation to non-perturbative contribution to screening masses [B. Brandt et al., 2014]

M. Panero (IFT) Torino, 19 September 2014 16 / 22

http://inspirehep.net/search?p=Panero:2013pla
http://inspirehep.net/search?p=CaronHuot:2008ni
http://inspirehep.net/search?p=Laine:2012ht
http://inspirehep.net/search?p=Brandt:2014uda


Outline

1 Introduction and motivation

2 Lattice QCD generalities

3 Some lattice results in finite-temperature QCD

4 A look at the future

M. Panero (IFT) Torino, 19 September 2014 17 / 22



M. Panero (IFT) Torino, 19 September 2014 18 / 22



Photon production rates

As electromagnetic probes, photon (and dilepton) rates provide important information on early
stages of the nuclear collision [Ghiglieri et al., 2013]

dΓγ

d3k
= −

1

(2π)32|k|
W<(k0 = k)

with W<(K) the photon polarization

W<(K) =

∫
d4X exp (iK · X )TrρJµ(0)Jµ(X )

where J is the electromagnetic current and ρ the density operator
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Photon production rates

As electromagnetic probes, photon (and dilepton) rates provide important information on early
stages of the nuclear collision [Ghiglieri et al., 2013]

dΓγ

d3k
= −

1

(2π)32|k|
W<(k0 = k)

with W<(K) the photon polarization

W<(K) =

∫
d4X exp (iK · X )TrρJµ(0)Jµ(X )

where J is the electromagnetic current and ρ the density operator

Like for the q̂ computation, soft QCD contributions can be computed in a dimensionally reduced
effective theory on the lattice
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Real-time QQ̄ potential

The real-time static quark-antiquark potential V (r , t) in hot QCD is generically complex [M. Laine

et al., 2007], [A. Beraudo, J.-P. Blaizot and C. Ratti, 2008] [N. Brambilla et al., 2008] [T. Hayata,

K. Nawa and T. Hatsuda, 2012]
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K. Nawa and T. Hatsuda, 2012]

Real part: Debye screening

Imaginary part: Landau damping
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et al., 2007], [A. Beraudo, J.-P. Blaizot and C. Ratti, 2008] [N. Brambilla et al., 2008] [T. Hayata,

K. Nawa and T. Hatsuda, 2012]

Outline of lattice strategy:

Compute Euclidean thermal Wilson loops WE(r , τ)

Extract spectral function ρ(r , ω) by inverting

WE(r , τ) =

∫
dω exp(−ωτ)ρ(r , ω)

Compute the real-time potential via

V (r , t) =

∫
dω ω exp(−iωt)ρ(r , ω)∫
dω exp(−iωt)ρ(r , ω)
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Real-time QQ̄ potential

The real-time static quark-antiquark potential V (r , t) in hot QCD is generically complex [M. Laine

et al., 2007], [A. Beraudo, J.-P. Blaizot and C. Ratti, 2008] [N. Brambilla et al., 2008] [T. Hayata,

K. Nawa and T. Hatsuda, 2012]

Outline of lattice strategy:

Compute Euclidean thermal Wilson loops WE(r , τ)

Extract spectral function ρ(r , ω) by inverting

WE(r , τ) =

∫
dω exp(−ωτ)ρ(r , ω)

Compute the real-time potential via

V (r , t) =

∫
dω ω exp(−iωt)ρ(r , ω)∫
dω exp(−iωt)ρ(r , ω)

Results exist for SU(3) Yang-Mills [A. Rothkopf, T. Hatsuda and S. Sasaki, 2012], similar studies in
full QCD ongoing [A. Bazavov, Y. Burnier and P. Petreczky, 2014]
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Marching towards lattice QCD at finite density

Sign problem: At finite quark chemical potential µ, fermionic determinant complex ⇒ Goodbye
configuration importance sampling

Some traditional workarounds:

QCD, but not really µ: expansions around µ = 0, imaginary chemical potential, isospin
chemical potential, . . .

µ, but not really QCD: SU(2)-QCD, QCD with adjoint quarks, G2-QCD, . . .
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Marching towards lattice QCD at finite density

Sign problem: At finite quark chemical potential µ, fermionic determinant complex ⇒ Goodbye
configuration importance sampling

Some traditional workarounds:

QCD, but not really µ

µ, but not really QCD

Some potentially promising new routes:

Dualities and worm algorithms—still mostly limited to Abelian models [Y. Delgado Mercado,

C. Gattringer and A. Schmidt, 2013], [S. Chandrasekharan and A. Li, 2012]; see also [M. P., 2005]

Large-N orbifold dualities

Density of states’ method
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Marching towards lattice QCD at finite density

Sign problem: At finite quark chemical potential µ, fermionic determinant complex ⇒ Goodbye
configuration importance sampling

Some traditional workarounds:

QCD, but not really µ

µ, but not really QCD

Some potentially promising new routes:

Dualities and worm algorithms

Large-N orbifold dualities [A. Cherman, M. Hanada and D. Robles-Llana, 2011]; see also
[P. Kovtun, M. Ünsal and L. G. Yaffe, 2005]

Density of states’ method
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Marching towards lattice QCD at finite density

Sign problem: At finite quark chemical potential µ, fermionic determinant complex ⇒ Goodbye
configuration importance sampling

Some traditional workarounds:

QCD, but not really µ

µ, but not really QCD

Some potentially promising new routes:

Dualities and worm algorithms

Large-N orbifold dualities

Density of states’ method [K. Langfeld, B. Lucini and A. Rago, 2012]
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Marching towards lattice QCD at finite density

Sign problem: At finite quark chemical potential µ, fermionic determinant complex ⇒ Goodbye
configuration importance sampling

Some traditional workarounds:

QCD, but not really µ

µ, but not really QCD

Some potentially promising new routes:

Dualities and worm algorithms

Large-N orbifold dualities

Density of states’ method

A word of caution: might be a NP-hard problem [M. Troyer and U.-J. Wiese, 2005]
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Closing words: Getting social

You are welcome to download an interactive, electronic version of this presentation from

[http://www.stp.dias.ie/∼panero/torino2014.pdf]

that you are encouraged to [share], [discuss] and [give feedback] about.

Thanks for your attention!
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